共查询到19条相似文献,搜索用时 63 毫秒
1.
一种快速全局优化的改进蚁群算法及仿真 总被引:33,自引:0,他引:33
在介绍基本蚁群算法原理的基础上,对其作了许多改进以提高其全局优化寻优速度,并给出了详尽的新算法编程仿真实现步骤,最后将未改进的基本蚁群算法与本文改进后的蚁群算法分别应用于TSPLIB中的Att532TSP问题进行了仿真实验.仿真研究表明,改进后的算法具有优良的全局优化性能,效果令人满意. 相似文献
2.
一种动态自适应蚁群算法 总被引:7,自引:4,他引:7
针对传统蚁群算法容易出现早熟和停滞现象的缺陷,提出了一种动态自适应蚁群算法。该算法对传统的MMAS蚁群算法中的信息素进行自适应调整。实验结果表明,该算法比传统的蚁群算法和传统的MMAS蚁群算法具有更好的搜索全局最优解的能力,并具有更好的稳定性和收敛性。 相似文献
3.
连续空间优化问题的自适应蚁群系统算法 总被引:3,自引:0,他引:3
蚁群算法是进化计算中一种新型优化算法,其基本算法用于求解排序类型的组合优化问题本文提出一种用于连续空间优化问题求解的蚁群算法,采用了新的基于目标函数值的启发式信息素分配算法,以及搜索过程中最优解的筛选方法.根据目标函数来自适应调整蚂蚁的路径搜索行为,从而保证算法快速找到全局最优解.一个多极值点的连续优化问题求解实例证明了该方法的有效性 相似文献
4.
为获得高可靠性,串并联系统的设计中常采用不同型号的元件,由于系统中元件有数量型号等的限制,每一元件又有重量、费用、可靠度等标志,所以串并联系统可靠性优化问题为典型的NP-难问题。采用两种不同的状态转移规则和与系统属性紧密相关的信息素更新规则,通过局部循环和整体循环分别搜索代表各子系统结构和系统结构的解向量,用蚁群算法成功地解决了元件可选择不同类型的串并联系统可靠性优化问题,仿真结果表明,蚁群算法可以在相对短的时间内较快地找到问题的最优解,蚁群算法与其它元启发式算法一样,可以有效克服求解组合优化的计算复杂度问题。 相似文献
5.
6.
传统的组合优化蚁群算法在求解过程中要消耗大量的时间,极易陷入局部最优化求解等弊端,同时还会产生大量无用的冗余迭代码,运算效率低。对此,提出了自适应组合优化蚁群算法。通过对改变信息素的迭代、参数选择的分析和增加对信息素局部更新方式,提高了整个系统运算速度及收敛速度,扩充了优化的范围,克服了无用迭代码的产生,减少了停滞现象的出现。通过该算法对旅行商问题进行仿真实验,其结果表明了该算法的可行性和有效性。 相似文献
7.
基于蚁群优化算法的碎纸拼接 总被引:2,自引:0,他引:2
对于碎纸拼接问题,找到一个全局一致的最终解决方案是非常关键的。本文提出了一种基于蚁群优化算法(ACO)的全局拼接方法。首先运用基于ψ-s分析的局部匹配方法进行局部拼接,然后利用局部拼接产生的候选匹配对构建搜索图、信息素与节点相关联。在迭代过程中,利用候选匹配对之间的矛盾和由蚁群构建的全局拼接路径更新信息素:对于在迄今最优路径上的候选匹配对,人工蚂蚁释放信息素;而位于构建失败的路径上的候选匹配对的信息素以一定比例蒸发。候选匹配对的信息素最终向一定方向收敛。最后,根据信息素来筛选候选匹配对。实验证明了这种方法的有效性。 相似文献
8.
针对蚁群算法收敛速度慢,容易陷入局部最优的问题,提出了一种基于聚度的自适应动态混沌蚁群算法(A_ACS)。在迭代前期利用聚度来衡量解的多样性,自适应调节局部信息素分布,同时引入混沌算子来增加种群多样性,避免算法陷入局部最优,从而提高解的精度;在迭代后期去掉混沌算子,减少混沌扰动性,来提高算法的收敛速度。将A_ACS用于TSP问题,仿真结果表明,该算法较ACS和MMAS算法减少了搜索时间,并且提高了解的质量,其平衡了多样性与收敛性之间的矛盾,整体性能优于其他两种算法。 相似文献
9.
蚁群算法在优化领域,尤其在组合优化问题中获得了较为成功的应用,然而它存在易于早熟收敛、搜索时间长等不足.针对该问题,提出了一种改进算法.该算法一方面在典型的状态转移规则中融合了一种随机选择策略,保证算法始终具有一定的探索能力;另一方面在搜索过程中保持一个优解池,通过交替使用池中最优解和其它次优解更新信息素,达到平衡算法强化搜索和分散搜索的目的.文中讨论了相关参数的选取方法,分析了所提算法的计算复杂度和收敛性,并针对典型的旅行商问题进行了仿真实验,结果表明该算法获得的解质量高于其他已有算法. 相似文献
10.
灰狼优化(grey wolf optimization,GWO)算法是一种基于群体智能的随机优化算法,已成功地应用于许多复杂的优化问题的求解.尽管GWO算法有很多改进形式,但缺少严谨的收敛性分析,导致改进后的算法不具备理论支撑.对此,运用鞅论分析其收敛性.首先,根据GWO算法原理建立其基本的数学模型,通过定义灰狼状态空间及灰狼群状态空间,建立GWO算法的Markov链模型,并分析该算法的Markov性质;其次,介绍鞅理论,推导出一个上鞅作为最优适应度值的群进化序列;然后,运用上鞅收敛定理,并结合其Markov性质对GWO算法进行收敛性分析,证明GWO算法能以1的可能性达到全局收敛;最后,通过数值实验验证其收敛性能.实验结果表明,GWO算法具有全局收敛性强、计算耗时较低、寻优精度高等特点. 相似文献
11.
蚁群混沌混合优化算法 总被引:2,自引:2,他引:2
为了克服混沌搜索的盲目性,提出了一种蚁群算法和混沌优化算法相结合的混合优化算法,该算法利用蚁群算法中信息素正反馈的思想指导当前混沌搜索的区域。工作蚁群按照信息素的浓度高低,分别按照不同的概率搜索不同的搜索区域,从而可减少混沌盲目搜索的次数。仿真结果表明,该方法能够明显提高混沌优化算法的寻优效率,同时算法的通用性将有所提高。另外,对于含有多个全局最优解的函数,在一次寻优过程中,该算法可以找到全部最优解,这是通常混沌搜索算法所不具备的。 相似文献
12.
蚁群优化算法求解TSP问题研究 总被引:2,自引:0,他引:2
介绍了信息素混合更新的蚁群优化算法,并用来求解TSP问题。混合信息素更新的蚁群优化算法是在蚁群系统(ACS)的基础上改进而成的,它在演化过程中,通过改变信息素的迭代最优更新规则和全局最优更新规则的使用频率,逐渐增加全局最优更新规则的使用频率,从而提高系统收敛的速度和减少系统搜索的导向性,并以Oliver30和att48为例给出了实验结果,说明了该混合算法的有效性。 相似文献
13.
蚁群优化算法的研究现状及研究展望 总被引:17,自引:0,他引:17
本文首先简要地介绍蚁群优化算法的来源、对应的生物原理和算法实现的框架.然后详细地讨论了算法的研究现状以及在各种优化问题中的应用情况,同时也指出了蚁群优化算法在当前应用中的一些不足.针对这些不足提出了解决方法,描述了几种蚁群优化算法的修正策略.最后对蚁群优化算法下一步的研究方向进行了展望. 相似文献
14.
由于蚁群算法采用随机选择策略,使得进化速度较慢,容易出现停滞现象,从而不能对解空间进一步进行搜索,不利于发现更好的解.针对以上问题,提出了一个带有狮王竞比参数的蚁群优化算法.该算法借鉴狮子种群生存竞争中狮王法则的作用,减少大量不必要的搜索,从而大大缩短了求解时间,同时又引用了最大—最小蚂蚁系统(MMAS)算法对信息素的限制,有效地控制了搜索停滞的问题.通过结合MMAS算法的仿真,结果表明:带有狮王竞比参数的改良算法,在求解同样TSP问题时,大大地缩短了优化时间,并且得到了更优的解. 相似文献
15.
一种改进的自适应蚁群算法求解TSP问题 总被引:2,自引:1,他引:2
文章提出了一种改进的蚁群算法,其核心是限制单步路径上的蚂蚁数目,当该路径上的信息素达到一定浓度时,人为的迫使蚂蚁改换路径,从而更好的全局寻优,避免算法陷入局部极优,并使用2-Opt方法对路径进行优化。对旅行商问题(TSP)的实验结果表明:新算法的优化结果和效率都优于基本蚁群算法。 相似文献
16.
蚁群优化算法及其应用研究进展 总被引:17,自引:5,他引:17
李士勇 《计算机测量与控制》2003,11(12):911-913,917
综述了近年来蚁群算法及其在组合优化中的应用研究成果。首先简述了蚁群的觅食行为及蚂蚁的信息系统,其次介绍了人工蚁群算法的基本原理及其主要特点。然后概述了这种算法在组合优化问题中的多种应用,诸如旅行商问题(TSP)、二次分配问题(QAP)、任务调度问题(JSP)、车辆路线问题(VRP)、图着色问题(GCP)、有序排列问题(SOP)及网络由问题等。最后对蚁群算法仍需要解决的问题和未来的发展方向进行了探讨。 相似文献
17.
针对传统蚁群算法在路径规划中存在收敛速度和寻优能力不平衡,算法易陷入局部最优等问题,提出一种自适应改进蚁群算法。为了提高算法收敛速度,在栅格环境下,根据最优路径的特点以及实际环境地图的基本参数,对初始信息素进行差异化分配;为了提高蚂蚁搜索效率,在状态转移概率中引入转角启发信息并对路径启发信息进行改进;重新制定信息素更新策略,设定迭代阈值,调整信息素挥发系数和信息素浓度,使算法在迭代后期依然具有较强的搜索最优解能力;采用分段三阶贝塞尔曲线对最优路径进行平滑处理以满足机器人实际运动要求。通过实验仿真与其他算法进行对比分析,验证了改进算法的可行性、有效性和优越性。 相似文献
18.
19.
针对蚁群算法在解决TSP问题时容易陷入局部最优,提出了一种改进信息素的算法,该方法可以扩大搜索空间,明显提高了蚁群算法的优化性能;并给出了算法的C++实现,结果表明算法可以得到更优的解。 相似文献