首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
采用微乳液水热法制备了NaYF4:Yb3+,Er3+的上转换纳米氟化物,粉末X-射线衍射(XRD)图显示:反应时间在48h以内,NaYF4:Yb3+,Er3+纳米粒子产物并非NaYF4的单一相。水热时间延长到72h时,所得产物与PDF#28-1192相吻合,表明产物转变为单一的β-NaYF4。扫描电镜分析结果表明,NaYF4:Yb3+,Er3+纳米粒子随反应时间增加由立方相过渡为六方相,粒径大约在150-160nm。近红外荧光和上转换荧光光谱研究发现,下转换光谱最强发射峰位于1540 nm(对应于4I13/2—4I15/2);Yb3+(c/mol):Er3+(c/mol)=3:1时上转换发射中心分别在523nm、538nm和655nm(分别对应2H11/2→4I15/2、4S3/2→4I15/2和4F9/2→4I15/2跃迁)。通过分析上转换发光机理,发现无论绿光发射还是红光发射均为双光子过程。  相似文献   

2.
以固相法制备的单一晶相、粒径细小且发光性能优越的NaYF4:Er3+,Yb3+上转换发光材料为原料,制备出了红外激光探测卡.并对粘结剂、稀释剂加入量对探测卡性能的影响进行了研究.当粘结剂、粉体和稀释剂质量比为2:8:1时,得到的红外激光探测卡的性能最佳.  相似文献   

3.
研究了掺杂Ce3+和Yb3+对Er3+掺杂20Bi2O3-15Ga2O3-45PbO-20GeO2玻璃1.5μm波段荧光和可见上转换发光性能的影响,分析了Ce3+、Yb3+离子和Er3+离子间的能量传递过程。结果表明:Yb3+离子掺杂在提高Er3+离子1.5μm波段荧光强度的同时,也显著增强了可见上转换红、绿光发射强度。在Yb3+/Er3+共掺杂玻璃中引入Ce3+离子,有效抑制了可见上转换发光,进一步增强了Er3+离子1.5μm波段荧光。  相似文献   

4.
研究了Er3+-Yb3+共掺钡镓锗玻璃的吸收光谱和上转换光谱.分析了Yb3+离子浓度变化对玻璃光谱性能及对稀土离子间能量转移效率的影响,探讨了铒镱共掺钡镓锗玻璃的上转换发光机制.结果表明玻璃的紫外截止波长在280 nm附近.采980 nm LD激发玻璃样品,在室温下观察到强烈的上转换绿光和红光发射.随着Yb3+离子浓度的增加,上转换红光和绿光发射均增强,而Yb3+对Er3+离子的能量转移效率呈先升高后降低的趋势.当Yb3+浓度为3 mol%时,Yb3+-Er3+的能量转移效率达到最大值83%.能量分析表明980 nmLD激发产生的上转换绿光主要源于Er3+离子4I11/2能级和Yb3+离子2F5/2能级之间的能量转移过程;而红光发射主要源于Er3+离子4I13/2能级与Yb3+离子2F5/2能级之间的能量转移过程.  相似文献   

5.
研究了Er3+/Yb3+/Ce3+掺杂15Ga2O3-75GeO2-10Na2O玻璃的热稳定性和光谱特性,讨论了Yb3+和Ce3+的引入对Er3+的可见及1.5-μm发光性能的影响。分析发现:在Er3+单掺的样品中引入Yb3+极大地提高了Er3+对980 nm光的吸收,同时增强了1.5-μm和上转换发光强度。Ce3+的引入,通过能量传递Er3+(4I11/2)+Ce3+(2F5/2)→Er3+(4I13/2)+Ce3+(2F7/2),提高了1.5-μm发光并抑制了其上转换发光。优化Yb3+掺杂浓度在Yb2O3/CeO2摩尔比为3∶1左右。  相似文献   

6.
为了提高单结非晶硅太阳能电池的光电转换效率,缓解日益严重的能源和环境问题,采用高温固相法制备了稀土离子Yb3+和Ho3+共掺的NaYF4上转换粉体,并对其进行了X射线衍射测试、扫描电镜以及光致发光测试。对Yb3+和Ho3+共掺的NaYF4上转换发光材料在热处理工艺下的变化进行了研究,分析了表面形貌和相结构对上转换发光性能的影响。发现在980 nm近红外光的激发下,共产生3个发射峰,中心波长分别位于541、649、750 nm,为非晶硅太阳能电池的最佳响应波段,表明该材料可应用于非晶硅太阳能电池提升其电池效率。进一步研究表明:可通过改变退火温度来改变样品的表面形貌和相结构,进而大幅度提高样品的上转换发光性能。在退火温度为700益时,样品呈标准六方相结构、表面致密、粒径均匀、上转换性能提高近40倍。  相似文献   

7.
采用高温固相法制备了Gd2O2S:Yb3+,Ho3+上转换发光材料,并研究了激活剂Ho3+和敏化剂Yb3+之间配比、烧结的温度和烧结时间对上转换发光材料发光性能的影响,得到了最佳离子配比、烧结时间与烧结温度,用XRD、SEM、荧光光谱等对样品进行了表征.采用快进快出的制备工艺,得到的上转换发光材料尺寸约为4μm,粒度均一,具有明显的六方晶形.Gd2O2S:Yb3+,Ho3+在Ho3+/Yb3+摩尔掺杂比为0.5:18,1150℃条件下烧结2h时,发光最强.该粉体在980nm红外光照射下发出耀眼的绿光,光谱峰值位于544nm和548nm两个发射峰,对应于Ho3+离子的5F4,5S2→5I8跃迁.在1064nm红外光照射下,光谱峰值位于548nm处的主峰,对应于Ho3+离子的5S2→5I8跃迁.  相似文献   

8.
采用燃烧法制备了Yb3+/Er3+共掺杂CeO2纳米晶发光粉末,并通过改变稀土硝酸盐和甘氨酸的比例对合成样品的颗粒度进行控制。通过X射线衍射及扫描电镜对所得粉体进行了检测,分析其微观结构及形貌特征;并对样品在980 nm激光激发下的上转换发光特性进行了研究。结果表明,nG/nN=0.36,退火温度为1 000℃时,所得样品结晶最好,晶粒尺寸约为50 nm;掺杂物质的量分数为3%Er3+时,粉体的上转换发光效果最好;当Yb3+的物质的量浓度为10%且Er3+的物质的量浓度为3%时,所得CeO2:Yb3+/Er3+纳米晶粉体获得的上转换发光效果最好;用980 nm激发光源激发CeO2基质时,可观测到峰值位于525,545,557,654和674 nm的上转换发光,其中525 nm处被识别为2H11/2→4I15/2跃迁,545,557 nm处为4S3/2→4I15/2跃迁,654,674 nm处为4F9/2→4I15/2跃迁。  相似文献   

9.
为了进一步探讨稀土Er3+掺杂材料在蓝/绿可见波段和紫外波段的上转换发光机制,制备了掺杂Er3+的ZrF2-SiO2材料,测量了样品的吸收谱和在980 nmLD激发下的上转换荧光发射谱,研究了上转换发光强度与激光泵浦功率的对数关系.分析了稀土Er3+中4f电子跃迁的特征.证实了在980 nmLD的激发下,ZrF2-SiO2:Er3+在404 nm、445 nm和525 nm、548 nm附近的蓝/绿可见波段上转换发光过程是激发态吸收(ESA),得到了2H9/2→4I15/2、4F5/2→4I15/2蓝光三光子过程和4S3/2→4I15/2、2H11/2→4I15/2绿光双光子过程上转换发光机制.  相似文献   

10.
用高温熔融法制备了Tm3+/Er3+/Yb3+共掺碲酸盐玻璃(TeO2-ZnO-La2O3)样品,测试了玻璃样品的吸收光谱和上转换发光光谱,分析了上转换发光机理。结果发现:在975 nm,波长激光二极管(LD)激励下,制备的碲酸盐玻璃样品可以观察到强烈的红光(662 nm)、绿光(525、546 nm)和蓝光(475 nm)三基色上转换发光,分别对应于Er3+的4F9/2→4I15/2,2H11/2→4I15/2、4S3/2→4I15/2和Tm3+的1G4→3H6能级跃迁;随着Yb3+掺杂含量和泵浦功率的增加,样品的上转换发光强度都得到了一定程度的提高;通过调整稀土掺杂的浓度,得到了接近于标准白光(EE)发射。  相似文献   

11.
采用水热法制备了Er~(3+)掺杂的NaYbF_4上转换发光材料,X射线衍射结果表明,Er~(3+)掺杂没有改变产物的NaYbF_4晶相,EDS图发现该晶体主要成分是Na、Yb和F,同时还发现了Er,说明晶体中成功掺进了Er元素。SEM分析发现产物为圆盘状结构并且没有严重的团聚现象,晶体尺寸均匀。上转换发光光谱图出现了三个比较明显的发光峰,其发光中心分别位于525nm、540nm和660nm,其中660nm处最强。红光强于绿光主要是因为在高浓度Yb~(3+)的作用下Er~(3+)发生了交叉弛豫。  相似文献   

12.
Nanocrystalline Gd1.77 Yb0.2Er0.03O3 samples were prepared by combustion and precipitation methods.Structures and upconversion luminescence properties of samples were studied.The results of XRD show that all samples are cubic structure,the average crystallite size could be calculated as 23 nm and 39 nm.respectively.The lattice constants were obtained.The FT-IR spectra were measured to investigate the vibrational feature of the samples.Upconversion luminescence spectra of samples under 980 nm laser excitation were investigated.The strong red emission of samples were observed,and attributed to 4F9/2→4I15/2 transitions of Er3+ ions,the emission intensity for sample synthesized by precipitation method is stronger compared to that of combustion method. The possible upconversion luminescence mechanisms in nanocrystalline Gd1.77Yb0.2Er0.03O3were discussed.  相似文献   

13.
制备了Nd^3+和Dy^3+掺杂立方相NaYF4上转换发光纳米晶体,用XRD、荧光光谱等测量手段对纳米颗粒的结构和发光性能进行表征,探讨Nd3’和Dy¨的掺杂比例对上转换发光的影响.利用776nm红外光激发样品,NaYF4:Nd^3+,Dy^3+实现蓝、绿上转换发光,出现Dy^3+特征峰:479nm、574nln上转换发射峰.探讨基质NaYF4中Nd^3+对Dy^3+的敏化作用及上转换机制.  相似文献   

14.
利用水热法成功制备了Yb~(3+)/Ho~(3+)掺杂氟磷灰石(FA:Yb~(3+)/Ho~(3+))纳米材料,通过改变稀土离子Yb~(3+)的掺杂比例有效提高了纳米材料的上转换发光强度。利用透射电子显微镜(TEM)、X射线衍射仪(XRD)、傅里叶红外光谱仪(FTIR)、荧光光谱仪等表征手段对Yb~(3+)/Ho~(3+)掺杂纳米氟磷灰石的形貌、结晶程度和物相组成、发光性质进行了研究。结果表明,Yb~(3+)/Ho~(3+)掺杂氟磷灰石纳米材料呈棒状并具有六方相结构。通过对稀土离子Yb~(3+)的掺杂比例进行调节,使得材料的上转换发光效率有了明显的增强,Yb~(3+)的掺杂含量为60%时发光最强。因此,这类具有较好上转换发光性能的FA:Yb~(3+)/Ho~(3+)纳米材料可为细胞标记和成像提供良好的条件,有望促进其在生物医药领域中的广泛应用。  相似文献   

15.
测量了新型激光晶体Nd:GdVO4的室温吸收光谱和近红外区荧光谱,观察到该晶体在593 nm、754 nm和806 nm附近有3个较强的吸收带,在912.2 nm、1 063.4 nm、1 082.3 nm和1 340.6 nm有4个主要发射峰.实验研究了Nd:GdVO4晶体在不同激发波长下的上转换发光情况,得到该晶体在440 nm、540nm、600 nm和668 nm附近存在的4个上转换发射峰,分析了其产生的能级跃迁机制.  相似文献   

16.
A photon avalanche phenomenon was observed in Er3+ and Li+ codoped ZnO nanocrystals at room temperature under excitation around 976 nm. When the excitation power was over 120 mW/mm2 , we found that the upconversion of red emission was generated by a four-photon absorption process and might be caused by in-tense interaction between neighboring Er3+ ions: 4F7/2+4I11/2→24F9/2. When the excitation power was over the threshold of 240 mW/mm2, the green emission avalanche upconversion was generated through an excited-state absorption process: 4F9/2 + photon →2H9/2. The study extends the knowledge of this ion to a wider range of upconversion application.  相似文献   

17.
针对第3代太阳电池用上转换材料,采用改良的水热技术优化制备了掺杂稀土离子的纳米氟化钇钠(NaYF4)上转换荧光材料。主要关注了有机溶剂和螯合剂对制备上转换材料性能的影响。测试结果表明:有机溶剂乙醇可以有效地抑制YF3等杂峰;螯和剂乙二胺四乙酸二钠(EDTA)可以分散颗粒达到增大颗粒表面积的作用;制备获得了具有六角晶向结构的Yb3+/Er3+共掺上转换材料,其上转换发射出能够被太阳电池有效吸收利用的红光(653 nm)和绿光(5205、40 nm)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号