首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Biodegradable poly(L ‐lactide) (PLLA) scaffolds with well‐controlled interconnected irregular pores were fabricated by a porogen leaching technique using gelatin particles as the porogen. The gelatin particles (280–450 μm) were bonded together through a treatment in a saturated water vapor condition at 70°C to form a 3‐dimensional assembly in a mold. PLLA was dissolved in dioxane and was cast onto the gelatin assembly. The mixtures were then freeze‐dried or dried at room temperature, followed by removal of the gelatin particles to yield the porous scaffolds. The microstructure of the scaffolds was characterized by scanning electron microscopy with respect to the pore shape, interpore connectivity, and pore wall morphology. Compression measurements revealed that scaffolds fabricated by freeze‐drying exhibited better mechanical performance than those by room temperature dying. Along with the increase of the polymer concentration, the porosity of the scaffolds decreased whereas the compressive modulus increased. When the scaffolds were in a hydrated state, the compressive modulus decreased dramatically. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1373–1379, 2005  相似文献   

2.
In the last few years, the field of tissue engineering has suffered an exponential growth, and although it is true that the processing parameters affect the properties of the scaffolds, only a few studies have investigated that statement. For that reason, the influence of different parameters involved in the freeze-drying process (container, freezing temperature, pH, and solvent used) on the mechanical and structural properties of gelatin-based scaffolds was analyzed in this study. Thus, rheological measurements and porosity analyses were performed to evaluate the scaffolds obtained. Results indicate that the parameters evaluated modify the mechanical properties of the scaffold, highlighting the option of a plastic mold to contain an acidic protein solution produced using a weak acid (acetic acid) at low concentration (0.05 M) as solvent. On the contrary, only the pH and the freezing temperature led to significant differences in the porosity of these scaffolds, obtaining values higher than 95% for all the systems studied. These results are useful to demonstrate that the control of the different parameters implied in the processing technique allows designing a scaffold with specific properties suitable for different applications. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47671.  相似文献   

3.
《Ceramics International》2020,46(9):13607-13614
Bacterial infection of the implanting materials is one of the greatest challenges in bone tissue engineering. In this study, porous forsterite scaffolds with antibacterial activity have been fabricated by combining 3D printing and polymer-derived ceramics (PDCs) strategy, which effectively avoided the generation of MgSiO3 and MgO impurities. Forsterite scaffolds sintered in an argon atmosphere can generate free carbon in the scaffolds, which exhibited excellent photothermal effect and could inhibit the growth of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) in vitro. In addition, forsterite scaffolds have uniform macroporous structure, high compressive strength (>30 MPa) and low degradation rate. Hence, forsterite scaffolds fabricated by combining 3D printing and PDCs strategy would be a promising candidate for bone tissue engineering.  相似文献   

4.
Hydrogel scaffolds with well-defined internal structure and interconnected porosity are important for tissue engineering. A three-dimensional bioplotting technique supplemented with thermal/submerged ionic crosslinking process was used to fabricate hydrogel scaffolds. Six scaffold geometries were fabricated and their influence on mechanical performance was investigated. The 0/90–0.8 group with the lowest porosity showed the highest Young’s modulus while the Shift group showed the lowest Young’s modulus. Same trend has also been observed for the dynamic modulus of each group. Results demonstrated that the mechanical performance of hydrogel scaffolds can be tuned by changing the internal structure parameters including strands orientation and spacing between strands.  相似文献   

5.
Junchuan Zhang 《Polymer》2005,46(13):4979-4985
Two kinds of polyester porous scaffolds having cubic and spherical macropores were fabricated, and a comparative study of their morphologies and mechanical properties were made in this paper. Poly(d,l-lactic-co-glycolic acid) (PLGA) scaffolds were prepared by room temperature compression molding and particulate leaching method based on cubic NaCl particles and paraffin spheres with a similar size range of 355-450 μm and a series of porosities (77-97%). Scanning electronic microscopy demonstrated that the spherical pore scaffolds exhibited better pore interconnectivity than the cubic pore ones. In compressive tests of both kinds of scaffolds, striking yield peaks were found at relatively low porosities, but just non-linear flexure behavior was observed at high porosities. The power-law relationships of compressive modulus and compressive strength versus porosity were confirmed in both foams. Comparison of the underlying scaling exponents reveals that the scaffolds with spherical pores are, at high porosities, with better compressive properties to a certain degree in contrast to those with cubic pores.  相似文献   

6.
A novel method for the fabrication of porous poly(L -lactide-co-glycolide) (PLGA) scaffolds by combining thermally induced phase separation and porogen leaching is presented in this article. Big pores with about 75–400 μm diameters in the obtained scaffolds were generated by the porogen, sucrose particles, while small pores with diameters less than 20 μm induced via phase separation. Extraction of the solvent, chloroform by ethanol at cool temperatures could reduce the scaffold toxicity. Effects of PLGA concentration, freezing temperature, volume fraction of porogen, and introduction of β-tricalcium phosphate (β-TCP) on morphology, porosity, and compressive properties of the scaffolds were systematically discussed. Results showed that the size of small pores decreased by decreasing the polymer concentration and reducing the freezing temperature, whereas the interconnectivity of the scaffolds was improved by increasing the porogen fraction. The compressive modulus and strength were significantly lowered by increasing the scaffold porosity, that is, by increasing porogen fraction, or decreasing the polymer concentration, or reducing the freezing temperature. Addition of β-TCP into the scaffolds did not influence the compressive modulus significantly but tended to decrease the compressive strength. The obtained scaffolds with diverse pore sizes would be potentially used in bone tissue engineering. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
In this study, vascular stents were fabricated from poly (lactide-ɛ-caprolactone)/collagen/nano-hydroxyapatite (PLCL/Col/nHA) by electrospinning, and the surface morphology and breaking strength were observed or measured through scanning electron microscopy and tensile tests. The anti-clotting properties of stents were evaluated for anticoagulation surfaces modified by the electrostatic layer-by-layer self-assembly technique. In addition, nano-composite scaffolds of poly (lactic-co-glycolic acid)/polycaprolactone/nano-hydroxyapatite (PLGA/PCL/nHA) loaded with the vascular stents were prepared by thermoforming-particle leaching and their basic performance and osteogenesis were tested in vitro and in vivo. The results show that the PLCL/Col/nHA stents and PLGA/PCL/nHA nano-composite scaffolds had good surface structures, mechanical properties, biocompatibility and could guide bone regeneration. These may provide a new way to build vascularized-tissue engineered bone to repair large bone defects in bone tissue engineering.  相似文献   

8.
《Ceramics International》2016,42(12):13761-13772
The incorporation of a bioactive inorganic phase in polymeric scaffolds is a good strategy for the improvement of the bioactivity and the mechanical properties, which represent crucial features in the field of bone tissue engineering. In this study, spray-dried mesoporous bioactive glass particles (SD-MBG), belonging to the binary system of SiO2-CaO (80:20 mol%), were used to prepare composite scaffolds by freeze-drying technique, using a silk fibroin matrix. The physico-chemical and biological properties of the scaffolds were extensively studied. The scaffolds showed a highly interconnected porosity with a mean pore size in the range of 150 µm for both pure silk and silk/SD-MBG scaffolds. The elastic moduli of the silk and silk/SD-MBG scaffolds were 1.1±0.2 MPa and 6.9±1.0 MPa and compressive strength were 0.5±0.05 MPa and 0.9±0.2 MPa, respectively, showing a noticeable increase of the mechanical properties of the composite scaffolds compared to the silk ones. The contact angle value decreased from 105.3° to 71.2° with the incorporation of SD-MBG particles. Moreover, the SD-MBG incorporation countered the lack of bioactivity of the silk scaffolds inducing the precipitation of hydroxyapatite layer on their surface already after 1 day of incubation in simulated body fluid. The composite scaffolds showed good biocompatibility and a good alkaline phosphatase activity toward human mesenchymal stromal cells, showing the ability for their use as three-dimensional constructs for bone tissue engineering.  相似文献   

9.
In this work, TiC-SiC-Ti3SiC2 composites were synthesized by in situ reactive hot pressing using β-SiC, graphite, and TiH2 powders as initial materials. Microstructure and mechanical properties of as-prepared dense composites were systematically investigated. It was found that by increasing the initial SiC content the final SiC content in the composites increased in contrast to the decrease in TiC and Ti3SiC2 contents. In the dense composites, TiC and Ti3SiC2 grains exhibited transgranular fracture, whereas SiC particles showed intergranular fracture. The composite containing 77 vol.% TiC, 4 vol.% SiC, and 19 vol.% Ti3SiC2 had the highest flexural strength of 706.6 MPa. The composite consisting of 44 vol.% TiC, 49 vol.% SiC, and 7 vol.% Ti3SiC2 exhibited the highest Vickers hardness of 22.3 GPa and the highest fracture toughness of 6.0 MPa·m1/2.  相似文献   

10.
烧结法赤泥分别经硬脂酸、铝酸酯偶联剂、硅烷偶联剂和十二烷基苯磺酸钠湿法球磨改性后,与丁苯橡胶(SBR)进行熔融共混,制得改性赤泥/SBR复合材料,然后对改性赤泥和赤泥/SBR复合材料的表面性质、微观结构和力学性能进行表征测试。结果表明:球磨改性后的赤泥粒度减小,表面官能团含量发生变化。经硅烷偶联剂改性的赤泥,Si—O—C和Si—O—Si官能团含量增加,触角明显增大;改性赤泥在丁苯胶复合材料中分散性和相容性增加,硅烷偶联剂改性后的赤泥填充橡胶复合材料的力学性能显著增加,拉伸和撕裂强度分别由纯胶的1.6MPa和8.8 kN/m2增加到9.8MPa和21.6kN/m2,改性赤泥补强效果较为明显。  相似文献   

11.
Degradable polymers are often desirable for the fabrication of medical implants, but thermal processing of these polymers is a challenge. We describe here how these problems can be addressed by discussing the extrusion of fibers and injection molding of bone pins from a hydrolytically degradable tyrosine-derived polycarbonate. Our initial attempts produced fibers and pins with bubbles, voids, and discoloration and resulted in the formation of large polymer plugs that seized screws and blocked extruder dies. The material and process parameters that contribute to these issues were investigated by studying the physical and chemical changes that occur during processing. Differential scanning calorimetry and thermogravimetric analysis combined with IR analysis showed that residual moisture and solvents in conjunction with heat cause degradation and crosslinking as indicated by gel permeation chromatography. Rheology and melt flow index measurements were useful in characterizing the extent of dependence of polymer viscosity on temperature and molecular weight. With these insights, we could process our polymer into fibers and rods by controlling residual moisture, time, and temperature and by adjusting processing parameters in real time. The systematic approach described here is applicable to other degradable polymers that are difficult to process.  相似文献   

12.
Silk fibroin has been investigated for various biomedical applications. In this research, through a green process, without using freeze‐drying, which is energy consuming during a single step process that is completely aqueous‐based, without using any additional materials during or after structure formation, water‐insoluble silk fibroin sponges have been obtained; these achieved only through keeping fibroin solutions frozen at a suitable temperature for a sufficient time. The effect of solution concentration and freezing conditions on the pore morphology and size, microstructure, and mechanical properties was investigated. A discussion has been proposed for the formation of structures. The average measured pore sizes were approximately from 4 to 77 μm. Elastic modules of the investigated structures varied from about 100 to 900 kPa. Cyclic mechanical tests were performed; the remaining strain of the structures reached to about 1%. A less considered issue which can be considered as the possible significant change of the mechanical behavior of as‐prepared samples after one or more times of loading and unloading should be noted. The used method in this study as a cost effective and convenient procedure could have the potential for application in the production of porous structures for biomedical applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46537.  相似文献   

13.
In this study, highly porous polycaprolactone-based composites (90% porosity) with hierarchical pore structure (400–500?µm) and nanotopographical features were prepared by 3D printing. 45S5 Bioglass particles with different sizes (<100?nm; 250?nm; 6?µm) and concentrations (2, 6, and 10?vol%) were utilized to attain improved mechanical strength and bioactivity. The micrometric particles embedded in the polymer matrix enhanced the elastic modules up to 235%. The ultrafine particles decorated the struts and affected nanotopography, hydrophilicity, and nanohardness by about 100%. The rate of pore filing lowers in the presence of nanoparticles as compared with microparticles.  相似文献   

14.
《Ceramics International》2022,48(5):6477-6487
A series of porous scaffolds of piezoelectric ceramic barium titanate (BaTiO3) were successfully fabricated by Digital Light Processing (DLP) 3D printing technology in this work. To obtain a high-precision and high-purity sample, the debinding sintering profile was explored and the optimal parameters were determined as 1425 °C for 2h. With the increase of scaffolds porosity from 10% to 90%, the compressive strength and piezoelectric coefficient (d33) decreased gradually. The empirical formulas about the mechanical and piezoelectric properties were obtained by adjusting BaTiO3 ceramics with different porosity. In addition, the distribution of potential and stress under 100 MPa pressure were studied by the finite element method (FEM).  相似文献   

15.
The promise of tissue engineering is the combination of a scaffold with cells to initiate the regeneration of tissues or organs. Engineering of scaffolds is critical for success and tailoring of polymer properties is essential for their good performance. Many different materials of natural and synthetic origins have been investigated, but the challenge is to find those that have the right mix of mechanical performance, biodegradability and biocompatibility for biological applications. This article reviews key polymeric properties for bone and vascular scaffold eligibility with focus on biopolymers, synthetic polymers and their blends. The limitations of these polymeric systems and ways and means to improve scaffold performance specifically for bone and vascular tissue engineering are discussed. © 2013 Society of Chemical Industry  相似文献   

16.
In this study, injectable PEG-based hydrogels containing Laponite particles with mechanical and structural properties close to the natural articular cartilage are introduced. The nanocomposites are fabricated by imide ring opening reactions utilizing synthesized copolymers containing PEG blocks and nanoclay through a two-step thermal poly-(amic acid) process. Butane diamine is used as nucleophilic reagent and hydrogels with interconnected pores with sizes in the range of 100–250?µm are prepared. Improved viscoelastic properties compared with the conventional PEG hydrogels are shown. Evaluation of cell viability utilizing human mesenchymal stem cells determines cytocompatibility of the nanocomposite hydrogels.  相似文献   

17.
This work deals with the additive manufacturing and characterization of hydroxyapatite scaffolds mimicking the trabecular architecture of cancellous bone. A novel approach was proposed relying on stereolithographic technology, which builds foam-like ceramic scaffolds by using three-dimensional (3D) micro-tomographic reconstructions of polymeric sponges as virtual templates for the manufacturing process. The layer-by-layer fabrication process involves the selective polymerization of a photocurable resin in which hydroxyapatite particles are homogeneously dispersed. Irradiation is performed by a dynamic mask that projects blue light onto the slurry. After sintering, highly-porous hydroxyapatite scaffolds (total porosity ~0.80, pore size 100-800 µm) replicating the 3D open-cell architecture of the polymeric template as well as spongy bone were obtained. Intrinsic permeability of scaffolds was determined by measuring laminar airflow alternating pressure wave drops and was found to be within 0.75-1.74 × 10−9 m2, which is comparable to the range of human cancellous bone. Compressive tests were also carried out in order to determine the strength (~1.60 MPa), elastic modulus (~513 MPa) and Weibull modulus (m = 2.2) of the scaffolds. Overall, the fabrication strategy used to print hydroxyapatite scaffolds (tomographic imaging combined with digital mirror device [DMD]-based stereolithography) shows great promise for the development of porous bioceramics with bone-like architecture and mass transport properties.  相似文献   

18.
19.
Photothermal scaffolds can help clear bone tumor cells after resection. In this work, hydroxyapatite-akermanite-Fe3O4 (HA-AK-FE) bioceramic scaffolds were fabricated by infiltrating digital light processing (DLP)-printed HA-AK scaffolds in nano-Fe3O4 solution. The prepared HA-AK-FE samples exhibited excellent and controllable photothermal performance under the irradiation of 808 nm near-infrared light. By controlling nano-Fe3O4 concentration, irradiation power and infiltration time, temperature of HA-AK-FE samples could be regulated in a wide range from room temperature to 150 °C within 15 s. Photothermal temperature remained stable after 4 times repeated irradiations. In SBF solution and under subcutaneous tissue, the heating rate and photothermal temperature decreased obviously compared with in air, but they could still meet the needs of killing tumors (41–48 °C). The Fe release concentration of wafers after immersing in SBF for 1 day was 0.037 mg/L and non-venomous. These results confirm the feasibility and controllability of fabricating photothermal scaffolds by coating nano-Fe3O4 with vacuum infiltration, and the prepared HA-AK-FE scaffolds are hopeful to be used in photothermal therapy of bone tumors.  相似文献   

20.
In this study, porous biphasic calcium phosphate (BCP) scaffolds were fabricated by a freeze–gel casting technique using a tertiary-butyl alcohol (TBA) based slurry. After sintering, unidirectional macropore channels of scaffolds aligned regularly along the TBA ice growth direction were tailored simultaneously with micropores formed in the outer wall of the pore channels. The synthesized porous BCP scaffolds (two different sintering temperatures) exhibit compressive strength of 46.8 MPa for 43.0% porosity and 33.1 MPa for 45.9% porosity, respectively. After immersion in Hank's balanced salt solution (HBSS) for 1, 2, 4, 8 weeks, a precipitation started to be formed with individual small granules on the scaffolds surface. In the case of BCP scaffolds sintered at 1200 °C, β-TCP were slowly degraded with increasing the immersing time; on the other hand, α-TCP (from BCP scaffolds sintered at 1300 °C) was extremely degraded within 1 week of immersing. This behavior could be due to a fast hydrolysis (dissolution–reprecipitation) as a phase transformation from α-TCP to brushite or apatite compared to the β-TCP. After immersion in HBSS, overall the compressive strength of the scaffolds reduced by the gradual degradation in biological environment solution. This behavior is consistent with the degradation behavior of scaffolds after immersion in HBSS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号