首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
利用超声振动辅助铸造法制备了Al-Cr/Al原位复合材料,应用XRD、SEM以及能谱分析(EDS)研究了复合材料的微观结构。通过M-2000型磨损试验机研究了Al-Cr/Al原位自生复合材料的耐磨性能。结果表明,超声振动对原位增强体细化明显,随着Cr含量的增加,原位增强体含量增加,增强体尺寸增大。不同类型的Al-Cr金属间化合物在基体中同时生成,形成混合增强相;随着Cr粉末粒径增大,原位增强体尺寸具有最小值。随着Cr含量和粒径的增大,复合材料的磨损率呈先降低后升高的趋势。Cr含量为8%,粒径为75μm时,复合材料的磨损率最小,为0.294%,耐磨性能最好,相对纯铝耐磨性提高约8.5倍,磨损机制主要为磨粒磨损。  相似文献   

2.
保温时间对Al-Fe-Si/Al原位复合材料力学性能的影响   总被引:1,自引:0,他引:1  
采用粉末冶金瞬时液相烧结法制备了Al-Fe-Si/Al原位复合材料,应用X射线衍射仪(XRD)、扫描电镜(SEM)、能谱分析(EDS)研究了保温时间对瞬时液相烧结制备Al-Fe-Si/Al原位自生复合材料微观组织及力学性能的影响。结果表明:随着保温时间的延长,原位自生Al0.5FeSi0.5相晶粒逐渐长大,材料表面孔隙尺寸减小;保温时间为4h时,粒状、短棒状增强相弥散分布在基体上;复合材料的压缩强度、最大弯曲挠度和弯曲强度随着保温时间的延长呈先上升后下降的趋势,但保温时间的延长对复合材料的弹性变形量和塑性变形量影响不大;随着保温时间的延长复合材料的界面结合增强。  相似文献   

3.
采用机械合金化和真空热压烧结方法制备了Al_xCoCrCu_(0.5)FeNi高熵合金,研究Al含量对合金系的晶体结构、显微组织、硬度、压缩性能以及摩擦磨损行为的影响。球磨60h和真空热压烧结后的晶体结构均为FCC和BCC双相结构,但相对含量发生变化。Al含量的增加使合金塑性降低,硬度和强度增大,低Al含量的Al_0、Al_(0.5)合金塑性好,强度低,压缩量高达30%和25.6%;高Al含量的Al_(1.0)、Al_(1.5)合金塑性较差,强度高,压缩强度达到1855MPa和2083 MPa,原子半径大的Al含量增加造成严重的晶格畸变,使固溶强化效应增加是合金硬度和强度升高的主要原因。随着Al含量的增加,合金的断裂方式由韧性断裂向脆性断裂转变。合金的耐磨性与硬度呈正相关关系,Al_0、Al_(0.5)、Al_(1.0)的磨损机制为黏着磨损与磨粒磨损,Al_(1.5)合金则为磨粒磨损。  相似文献   

4.
AlNP/Al和TiB2P/Al复合材料摩擦磨损性能研究   总被引:2,自引:0,他引:2  
研究了油润滑条件下两种不同铝基复合材料及其基体合金的摩擦磨损性能,分析了增强体对材料摩擦磨损性能的影响以及相应的磨损机理.结果表明:油润滑条件下,随着摩擦时间的延长,AlNP/Al复合材料的摩擦系数由小变大趋于稳定;而TiB2P/LY12复合材料的摩擦系数却是由大变小趋于稳定,这主要与其摩擦过程中形成凹坑产生润滑油膜有关.由于增强体强度的增加,50%(体积分数,下同)TiB2P/Al复合材料的摩擦系数低于50%AlNP/Al复合材料,且耐磨性优于50%AlNP/LY12复合材料.增强相的加入显著提高了材料的耐磨性,使得复合材料的抗粘着能力明显优于基体合金.  相似文献   

5.
采用超声外场-原位混合盐反应法制备3%TiB_2/2A14(体积分数)铝基复合材料,在往复式摩擦磨损试验机上进行4种不同载荷(20,30,40,50N)的磨损实验,研究不同超声处理工艺制备的复合材料的耐磨性和摩擦行为。使用显微硬度计测量基体和复合材料的显微硬度。采用X射线衍射仪、扫描电子显微镜对测试样品进行物相成分鉴定、显微组织和表面磨损形貌观察,并研究其磨损机理。结果表明:超声能够有效打散颗粒团聚,改善颗粒分布状态,强化颗粒与基体的界面结合强度,因此经过超声处理的复合材料的耐磨性和显微硬度明显优于合金基体。经120s超声处理获得的复合材料,其硬度约为基体合金的2倍。在50N载荷的作用下,其磨损率约为基体合金的57.43%。在干摩擦条件下,基体主要表现为黏着磨损,复合材料表现为黏着磨损+磨粒磨损的混合型磨损,耐磨性能更佳。  相似文献   

6.
原位自生Ti3 Al金属间化合物基复合材料的微观结构   总被引:1,自引:1,他引:0  
采用原位自生(XD)法制备Ti3Al金属间化合物基复合材料,对复合材料的XRD,OM和SEM的分析结果表明,Ti-17Al-0.5C复合材料的基体为Ti3Al,增强相为Ti3AlC,且增强相在基体中按一定的方位排列,Ti-17Al-1.5(2.0)C复合材料的基体为Ti3Al,增强相由心部TiC矣包覆层Ti3AlC双层组成,随着含C量的增加,增强相由不发达的树脂晶变为等轴晶,对合金进行微力学探针测试表明,增强相TiC和Ti3AlC的显微硬度和弹性模量均大于基体Ti3Al,随着C含量的增加,合金中增强相和基体的显微硬度和弹性模量无明显变化。  相似文献   

7.
目的 研究不同超声功率对体育器材铝基复合材料微观组织及耐腐蚀性能的影响。方法 以ADC12铝合金和钛纤维为原料,采用超声振动在不同超声功率下制备原位Al3Ti颗粒增强复合材料,利用光学显微镜(OM)、扫描电镜(SEM)、X射线衍射仪(XRD)和电化学测试技术研究不同超声功率对复合材料微观组织、Al3Ti增强相及耐腐蚀性能的影响。结果 超声振动和原位颗粒增强均可细化复合材料的微观组织,最佳超声功率为750 W,此时复合材料微观组织细化最明显,初生α–Al颗粒平均尺寸最小,形貌最佳,富铁相Al5FeSi和Al3Ti增强颗粒的形貌较佳,分别呈现为短棒状和块状,且分布均匀,腐蚀速率最小,腐蚀表面平坦,腐蚀电位和腐蚀电流密度相比于ADC12铝合金分别上升了14.6%和下降了56.1%。当超声功率过大时,熔体过热容易导致组织粗化,初生α–Al颗粒和Al5FeSi相尺寸增大。复合材料耐腐蚀性能提升的机理是阴极相的细化和均匀分布。结论 通过超声振动原位生成Al3Ti可明显细化复合材料微观组织,提高耐腐蚀性能,当超声功率为750 W时,复合材料微观组织细化最明显,耐腐蚀性能最佳。  相似文献   

8.
采用旋转摩擦挤压(RFE)法制备多壁碳纳米管增强铝基(MWCNTs/Al)复合材料,分析MWCNTs/Al复合材料的显微组织、硬度和磨损性能。结果表明:用RFE法可制备具有一定形状尺寸的块体MWCNTs/Al复合材料;复合材料的成形质量好,显微组织为经动态再结晶后的细小等轴晶,MWCNTs在铝合金基体中分布均匀。复合材料的硬度随着MWCNTs体积分数增加先增加后降低,当MWCNTs体积分数为4%时,硬度是经RFE加工后基材的1.2倍。MWCNTs在复合材料磨损过程中起润滑作用,有助于降低MWCNTs/Al复合材料的磨损量提高复合材料的耐磨性。随MWCNTs体积分数的增加,复合材料的磨损率降低,当MWCNTs体积分数大于3%后磨损率变化较小。这是由于MWCNTs体积分数的增加,磨损机制发生变化,即由黏着磨损和轻微磨粒磨损转变为剥层磨损和磨粒磨损。  相似文献   

9.
以TiO2,C,Al和Mg粉为原料,原位合成TiC-Al2O3/Al基复合材料。采用XRD和SEM及磨损实验等手段研究Mg对复合材料微观组织及耐磨性的影响。结果表明:Mg影响反应过程及第二相分布,随着Mg含量的增加耐磨性逐渐增加,当预制块中镁为1.0%(质量分数)时,第二相分布弥散、细小,其颗粒尺寸约为2μm,耐磨性最好,磨损量仅为基体的1/6,继续增大Mg含量,由于生成大量粗针状Al3Ti,复合材料的耐磨性反而降低。  相似文献   

10.
采用原位合成法制备TiC/Al(7075)复合材料,研究原位TiC颗粒的存在形式、分布状态及不同原位TiC颗粒含量对TiC/Al(7075)复合材料的微观组织及力学性能的影响。结果显示,TiC颗粒多以近球形团聚态存在于7075铝基体中,颗粒团大小约为1μm。当原位TiC颗粒质量分数小于6%时,原位TiC颗粒分布较为均匀,随着颗粒含量的增加,TiC/Al(7075)复合材料的铸态组织由蔷薇状组织逐渐转变为等轴晶组织,晶粒尺寸也随着原位TiC颗粒含量的增加而减小。当原位TiC颗粒的质量分数大于6%时,组织中出现气孔。复合材料的硬度和抗冲击韧性测试表明,TiC/Al(7075)复合材料的硬度随TiC颗粒含量的增加而增加,最高硬度达HB 108,冲击韧性在颗粒质量分数为6%时达到最佳,较基体提升31.55%。  相似文献   

11.
A356Al/TiB2颗粒增强铝基复合材料的搅拌摩擦焊   总被引:1,自引:0,他引:1  
李敬勇  赵勇  陈华斌 《材料工程》2005,(1):29-32,36
采用纯机械化的固相连接技术--搅拌摩擦焊成功地焊接了应用原位反应合成法制造的铸态A356Al/6.5%TiB2(体积分数)颗粒增强铝基复合材料,与铝合金相比,铝基复合材料搅拌摩擦焊的焊缝质量对焊接参数更为敏感.该连接方法在较低温度下实现铝基复合材料的焊接,避免了基体铝合金与增强相之间的化学反应,同时在搅拌头机械搅拌、挤压和摩擦热的共同作用下,焊缝区基体材料的晶粒和增强相被破碎并形成再结晶晶核,细化了组织结构,增强相分布也更加弥散.焊缝区的硬度值波动范围很小,抗拉强度比母材增加约20%.研究表明,搅拌摩擦焊用于连接颗粒增强铝基复合材料具有明显的优势.  相似文献   

12.
本文研究了SiC颗粒增强铝基(ZL102)复合材料的磨损特性。结果表明,SiC颗粒的加入可提高材料的耐磨性,复合材料与基体合金相比,磨损速率相当低,而且其抗粘着磨损能力更强,磨损性能与增强相数量、分布及界面结合有关。   相似文献   

13.
采用冷压烧结和热挤压方法制备出1. 5~5 vol % SiCP (130 nm) / Al (149~75μm) 复合材料, 并对其抗压、硬度和滑动磨擦特性进行了研究, 旨在研究引入弥散的亚微米级SiCP 对SiCP / Al 复合材料磨擦性能的影响。结果表明: 随着SiCP (130 nm) 含量的增加, 其显微硬度值也增加, 在SiCP (130 nm) 含量为1. 5 vol %和5 vol %时,SiCP (130 nm) Al 复合材料显微硬度分别为28. 4 和33. 3 ; 复合材料的抗压强度分别是170 MPa 和186 MPa ; 在较高载荷下, 随SiCP 含量增加, 复合材料的耐磨性能提高, 1. 5 vol % 和5 vol % SiCP / Al 基复合材料具有优异的滑动磨损抗力, SiCP / Al 基复合材料耐磨性优于挤压态QSn6. 520. 4 和纯Al ; 磨损表面形成Al 基体弥散分布着SiCP和孔隙的理想耐磨组织。   相似文献   

14.
纳米复合材料是目前的研究热点,采用热压烧结法制备了纳米Al2O3颗粒强化铜基复合材料。采用阿基米德排水法测试了复合材料的致密度,采用硬度计测试其硬度,采用表面三维形貌仪测量其磨损体积并观察磨痕的三维形貌;采用摩擦磨损试验机研究了复合材料的摩擦磨损性能并分析其磨损机制;采用扫描电镜及能谱仪观察复合材料磨损前后的表面形貌、分析磨痕的化学成分;研究了工艺参数及Al2O3含量对复合材料性能的影响。结果表明:复合材料的最佳热压制备工艺为热压温度900℃,热压压力27.5 MPa,保温时间2 h,所得铜基复合材料的相对致密度达99.03%;随Al2O3含量增加,复合材料的硬度增加,耐磨性先升高后降低;Al2O3含量为2%时,复合材料磨损量最少,相对耐磨性为3.13,硬度较纯铜提高了35.5%;随Al2O3含量的增加,铜基复合材料的磨损机制从以黏着磨损为主转变为以磨粒磨损为主。  相似文献   

15.
采用化学气相沉积结合机械球磨的方法制备了碳纳米管(CNTs)和Al_2O_3颗粒混杂增强铝基复合材料,研究了球磨时间、Al_2O_3含量对复合材料组织和力学性能的影响。结果表明:本方法可以获得CNTs和Al_2O_3颗粒在铝基体内的均匀分散。随球磨时间的增加,复合材料的硬度随之增大;当球磨时间为180min时,复合材料硬度达纯铝的2.1倍。此外,随Al_2O_3颗粒含量的增加,复合材料的硬度和压缩屈服强度均不断提高。当Al_2O_3的质量分数为4%时,CNTsAl_2O_3/Al复合材料的硬度达112.1HV,为纯铝的2.8倍;压缩屈服强度达416MPa,为纯铝的4.6倍,说明CNTs和Al_2O_3的混杂加入发挥了良好的协同增强效果。  相似文献   

16.
采用接触反应法制备了原位自生Ti Cp/6061复合材料,利用XRD和SEM对复合材料进行物相分析及微观形貌观察,用6061铝合金基体材料作为对比,研究了增强粒子含量对复合材料硬度和摩擦磨损行为的影响。结果表明,采用接触反应法,以Ti粉、C粉和Al粉作为生成Ti C增强相的原材料,可直接在6061铝合金基体中原位生成Ti C颗粒,Ti C颗粒呈规则多边形,尺寸为0. 5~1μm。随着增强粒子含量的增加,原位自生Ti Cp/6061复合材料的硬度明显提高,T6热处理后5%(质量分数)的Ti Cp/6061复合材料的硬度为120. 5HBS,比基体6061铝合金提高了28. 1%。这是Ti C颗粒对6061基体材料的位错强化和细晶强化综合作用的结果。此外,随着增强粒子含量的提高,原位自生Ti Cp/6061复合材料的耐磨性也增强; T6热处理后,在100 N恒压作用下与GCR15材料对磨300 s,基体6061铝合金失重是5%(质量分数) Ti Cp/6061复合材料的2倍。其原因在于Ti C颗粒含量的提高减小了对磨材料与复合材料的有效接触面积,从而增强了原位自生Ti Cp/6061复合材料的耐磨性能。  相似文献   

17.
高体积分数SiC颗粒增强7系铝基复合材料(SiCp/7XXXAl)具有高比强度比刚度等特点,因此适宜作为结构件在航空航天、汽车等领域应用。本文采用压力浸渗法制备了45vol.%的SiCp/7075Al复合材料,并对复合材料和基体合金的时效行为进行了系统的研究。DSC分析结果发现复合材料的η′相和η相的放热峰分别比基体7075合金降低了4.4℃和0.5℃。复合材料与7075铝合金达到峰时效的时间均为9h,峰时效时复合材料与基体7075铝合金的硬度分别提高了38.7%(从213.4到296HB)和107.6%(从98.2到203.9HB)。颗粒的加入使得基体中的位错密度显著增加,这有利于析出相的形核。但另一方面,合金元素在界面的偏聚会抑制析出相的析出。因此,SiCp/7075Al复合材料的析出行为是两方面共同作用的结果。  相似文献   

18.
利用连续波2kW Nd-YAG激光在Ti6Al4V合金表面原位制备TiN枝晶增强梯度金属基复合材料表面层,并研究了该表面层的显微组织和磨损性能。结果表明:该表面层沿激光熔化深度具有明显的梯度结构,表面层与Ti6Al4V基体之间呈现良好的冶金结合,Ti6Al4V的表面硬度及耐磨性得到了显著增强.  相似文献   

19.
为提高Ti6Al4V合金的摩擦学性能,以NiCr-Cr3C2金属陶瓷粉末为涂覆材料,采用激光熔覆技术在Ti6Al4V表面制备以TiC为增强相、γ-NiCrAlTi固溶体为增韧相的熔覆层。采用X射线衍射仪(XRD)、扫描电镜(SEM)、能谱仪(EDS)分析了熔覆层的物相组成及显微组织,测试了熔覆层沿层深方向的硬度分布,分别在室温(24℃),300,600℃测试了熔覆层和Ti6Al4V合金基体的干滑动磨损性能。结果表明:熔覆层的平均硬度约1 100HV2 N,约为基体的3倍;室温时,由于高硬度增强相TiC和增韧相γ-NiCrAlTi固溶体的综合效应,激光熔覆γ-NiCrAlTi/TiC复合层的摩擦系数和磨损率比Ti6Al4V合金基体的显著降低,熔覆层具有较好的耐磨减摩性能,磨损机理主要为黏着磨损;300,600℃时,熔覆层被氧化,耐磨性减弱,磨损机理主要为黏着磨损和塑性变形。  相似文献   

20.
用电弧熔炼法制备Ni_3Si合金,添加Cr和痕量B以改善合金的塑性,研究了Ni_3Si合金的显微组织、相组成以及摩擦学性能。结果表明,纯Ni_3Si合金主要由β1-Ni_3Si相和γ-Ni_31Si_(12)相组成;添加质量分数为5%的Cr使合金转变成γ-Ni_31Si_(12)相和α-Ni相;进一步提高Cr含量使合金的组成为γ-Ni_31Si_(12)和Cr_3Ni_5Si_2相。添加Cr使合金的硬度呈现上升趋势,其中含10%Cr的合金硬度最高,约为700 HV;在干滑动摩擦过程中合金的摩擦系数为0.5左右,磨损率均远低于316不锈钢,其中含5%Cr的合金磨损率最低;随着载荷的增加Ni_3Si合金和含Cr 5%的镍硅合金,其磨损机理由磨粒磨损转变成粘着磨损,添加10%Cr的镍硅合金的磨损机理为疲劳磨损。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号