首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
传统边缘侧电力设备无法有效检测出对电网影响较大的冲击性负荷的设备类别与功率启停信息。为此,提出一种基于孪生分支网络的非侵入式冲击负荷辨识方法。通过总线入口处的高频采样数据提取波形的V-I轨迹特征和对角高斯谐波特征;预设多种先验信息对不同设备的冲击负荷特性进行训练,特别地,设计一种基于孪生分支结构的卷积神经网络,利用二分类交叉熵损失函数实现冲击负荷的分类辨识,同时引入最小平方误差损失函数对冲击负荷功率进行分解;使用非侵入式的方式并基于ARM Cortex-M4平台进行算法部署与识别测试。对比不同识别算法对冲击负荷的辨识能力,结果表明,当电网发生大功率冲击性波动时,孪生分支网络可以更准确地识别冲击负荷的设备类别,有效提高了对冲击负荷的辨识效果。  相似文献   

2.
在非侵入式负荷识别中基于原始电压-电流(V-I)轨迹特征的识别方法,难以对相似轨迹特征的负荷做出有效辨识。因此,提出了一种基于V-I轨迹特征的颜色编码方法,并利用K-means聚类算法和AlexNet神经网络进行负荷特征的辨识。首先,运用K-means聚类算法对负荷的有功和无功功率特征进行初步分类。然后,对未分类成功的负荷进行V-I轨迹构建和颜色编码处理,生成带有颜色特征的V-I轨迹。最后,运用AlexNet神经网络对负荷进行训练和分类,达到快速精细化的分类效果。针对公共数据集PLAID和WHITED,运用原始V-I轨迹特征和进行颜色编码后V-I轨迹的识别效果做对比分析,可知所提方法在节省计算时间的同时也提高了识别的准确度,提升效果明显。  相似文献   

3.
针对传统方法无法准确识别含高次谐波家用负荷的问题,文中提出了基于V-I轨迹矩阵、功率及高次谐波多特征融合的负荷辨识方法.首先,分析了11种典型家用负荷的V-I轨迹、功率特征以及谐波特征,提出了基于像素图像转换的混合特征矩阵构建方法,将负荷的功率、高次谐波特征通过二进制编码转换与基本V-I像素轨迹相融合,丰富了样本的特征信息;然后以混合特征矩阵作为卷积神经网络的输入,实现了对家用负荷类型的准确识别.算例中,文中所提算法可准确区分功率特征相似但高次谐波含量不同的加热器与吹风机2种负荷,且其对全类型家用负荷的准确辨识率超过93%.该算法的应用可为实际中准确排查含高次谐波家用负荷的用电安全隐患提供有力的技术支撑.  相似文献   

4.
崔昊杨  蔡杰  陈磊  江超  江友华  张驯 《电网技术》2022,46(4):1557-1567
在非侵入式负荷识别任务中,仅使用单一负荷特征对设备进行辨识时,存在特征重叠现象,无法满足对设备进行细粒度分类的需求。为此,该文提出一种基于颜色编码的非侵入式负荷细粒度识别方法。首先,采用Fryze功率理论将高频采样电流分解为有功、无功电流,并对高频采样电压与无功电流进行标准化处理以构建二维U-I轨迹图像。然后,利用颜色编码技术对轨迹图像进行处理,在R、G、B三通道中分别融合有功电流、轨迹变化信息及瞬时功率,得到彩色U-I轨迹图像。最后,构建卷积神经网络,对彩色U-I轨迹图像进行特征提取,实现对设备的分类。在此基础上,文中提出了一种自主学习方法,实现对负荷识别模型自主更新。使用PLAID和WHITED数据集对本算法的识别效果及自主学习方法进行测试。结果表明,文中方法使得U-I轨迹所携带的信息量增加,增强了负荷特征的独特性,从而实现对设备的细粒度识别;自主学习方法能够学习新型电器并更新模型,提升了负荷识别模型场景适应能力。  相似文献   

5.
负荷辨识是非侵入式负荷监测的关键,随着需求侧负荷数据的持续增长,利用智能算法对海量用电数据进行准确辨识成为目前的研究热点。该文在已有研究的基础上,建立非侵入式负荷辨识的有效处理方法,包括事件检测、负荷特征提取、特征筛选和负荷辨识算法。利用Fisher算法对提取的典型居民负荷特征进行筛选,降低了负荷特征的冗余度,将波形数据转化为可辨识的结构化数据。提出非侵入式负荷监测下基于粒子群优化的改进自组织神经网络负荷辨识算法。考虑不同负荷设备的物理特性差异,提取用电设备通用负荷特征,构建低时间复杂度和高辨识准确率的改进自组织神经网络系统,完成对负荷种类的判定。实验验证了该算法能够在非侵入式负荷监测条件下,实现对居民用户负荷种类的有效辨识,且算法收敛速度较快,准确度高。  相似文献   

6.
非侵入负荷监测是全面感知负荷数据及能效优化的有效途径。当前非侵入式负荷监测算法的主要观测对象是具有调控潜力的负荷,但对于其中功率较小、负荷曲线相似的电器辨识准确率还不够理想,算法对先验数据的依赖程度较高。基于此,提出一种基于多特征联合稀疏表达的SOM-K-means非侵入式负荷辨识算法,该算法利用负荷特征训练得出最优字典,结合最优字典与多特征联合稀疏表示构建目标函数,求解多特征联合稀疏矩阵,克服了单类负荷特征限制识别负荷种类的问题;将多特征联合稀疏矩阵作为输入,结合自组织(self-organizing map, SOM)神经网络优化的K-means算法与平均绝对误差值进行快速辨识。最后,利用PLAID数据集进行了实验验证,结果表明,所提算法仅需迭代120次辨识准确率即可达到90%,提高了算法收敛速度,证明了该方法能够准确高效地实现负荷辨识。  相似文献   

7.
基于粒子群算法搜索的非侵入式电力负荷分解方法   总被引:2,自引:1,他引:1       下载免费PDF全文
非侵入式电力负荷分解是根据入口处电流、电压信号进行用电负荷辨识的一种方法。然而,由于电流、电压波动等因素干扰,单一特征所得到的分解结果通常会与实际用电设备投切结果不一致。为了可靠地提升在线非侵入式电力负荷分解能力,构建了基于谐波的电流特征表达并结合功率两个特征作为设备投切状态辨识的目标函数。同时,引入了正态分布的度量函数,将其融合并作为粒子群(Particle Swarm Optimization, PSO)算法的适应度函数,以此寻找最佳的电力负荷分解结果。最终,通过实验室开发的非侵入式负荷分解装置进行实验。实验结果表明所述方法能获得更好的在线电力负荷分解能力。  相似文献   

8.
负荷在线监测能够为电网及用户提供即时的用电信息,是支撑能效管理和负荷预测工作的有效手段。传统监测方法采用侵入式设计,难以大范围推广应用,因此非侵入式负荷监测方法(NILM)具有重要研究意义。负荷辨识是非侵入式负荷监测的关键,以典型居民负荷的特性分析为基础,提出了一种基于遗传优化的非侵入式居民负荷辨识算法。该算法基于负荷设备的负荷特性,包括有功功率和电流有效值,利用三种不同的编码方法构造判断负荷运行状态的适应度函数,通过遗传算法寻优,最终确定居民负荷的工作状态,并通过实测数据进行验证。实验结果表明,该算法能够实现居民用户负荷状态的有效辨识,且算法收敛速度较快,准确度高。  相似文献   

9.
负荷投切事件是关联负荷分类、辨识的一个重要依据,为了能够准确的实现非侵入式负荷投切过程的辨识,提出一种基于KM算法投切事件匹配的非侵入式负荷辨识方法。在该方法中,首先采用一种功率曲线拟合逼近的方式进行负荷事件检测,并利用投切稳态特征建立用电设备投入和切除特征的概率分布模型。同时,考虑到负荷投入事件和切除事件数量不对等情况,将负荷事件与数据库负荷进行匹配,并采用加权优化的KM算法寻找最佳解,从而实现负荷投入和切除的正确匹配辨识。最后,在真实的测试场景并结合REDD数据集进行实验,结果表明文中方法能对负荷投切事件进行有效匹配辨识,为实现能耗细分奠定了基础。  相似文献   

10.
祁兵  韩璐 《电测与仪表》2018,55(16):19-25
针对传统的侵入式监测系统在设备投入、复杂性以及扩展性上存在的缺陷,以非侵入采集机制获取的负荷数据为基础,研究了一种基于负荷空间划分的负荷辨识方法。首先对5种典型负荷的10种特征进行降维处理,得到最佳辨识特征;利用最小平方误差算法构建判别函数,划分5种负荷的特征空间;利用负荷特征空间交叉的方法,实现负荷的辨识。利用实际采集的用电数据验证了该算法的有效性,且通过特征降维处理提高了算法的运算效率,通过负荷分离提高了辨识准确性。  相似文献   

11.
针对传统方法无法准确识别含高次谐波家用负荷的问题,文中提出了基于V-I轨迹矩阵、功率及高次谐波多特征融合的负荷辨识方法。首先,分析了11种典型家用负荷的V-I轨迹、功率特征以及谐波特征,提出了基于像素图像转换的混合特征矩阵构建方法,将负荷的功率、高次谐波特征通过二进制编码转换与基本V-I像素轨迹相融合,丰富了样本的特征信息;然后以混合特征矩阵作为卷积神经网络的输入,实现了对家用负荷类型的准确识别。算例中,文中所提算法可准确区分功率特征相似但高次谐波含量不同的加热器与吹风机2种负荷,且其对全类型家用负荷的准确辨识率超过93%。该算法的应用可为实际中准确排查含高次谐波家用负荷的用电安全隐患提供有力的技术支撑。  相似文献   

12.
负荷识别技术能将不同电器类型有效区分开,对于用电策略制定、需求响应具有重要意义。针对当前负荷识别技术无法有效实现负荷特征融合以及不同识别器模型结合的问题,提出一种基于异构基Stacking机制的居民用电负荷识别特征图像集成学习方法。该方法通过构建特征图像实现特征融合,利用卷积神经网络充分挖掘特征图像中蕴含的深层次特征,解决传统方法对特征挖掘不够深入的问题。同时引入集成学习Stacking方法将多种异质负荷识别模型结合,综合各种模型的优势,解决传统方法模型单一化的问题。最后使用公开数据集PLAID进行验证并在实验室电器设备上完成工程应用。结果表明,所提方法具有较高的识别准确率和应用价值。  相似文献   

13.
为了解决常用家电设备投切状态辨识问题,提出一种以神经网络为辨识模型的方法,增强其快速辨识能力。首先,从负荷印记出发,针对各用电设备的稳态电流谐波特性,建立用电设备特征标签。然后,采用弹性BP(Resilient back propagation,RPROP)神经网络,将输入数据特征向输出层非线性映射,实现快速收敛至全局最优点。训练中采用多种设备组合方式,进行用电设备特征辨识。最终,以五类常用用电设备进行实验,实验结果表明该算法能够有效地识别家用设备的工作状态组合,且对功率相近、谐波具有较小差异的用电设备工作状态也具有很好的辨识能力。  相似文献   

14.
为了利用不同深度神经网络的优势,提高深度学习算法对短期负荷的预测能力,提出一种基于多神经网络融合的短期负荷预测方法。以电力系统历史有功负荷、季节、日期类型和气象数据为输入特征,并行架构的深度神经网络和注意力机制网络为核心网络;以并行架构中的卷积神经网络通道提取静态特征,门控循环单元网络通道挖掘动态时序特征,采用注意力机制网络融合提取的特征并动态调整网络对不同特征的依赖程度;使用Maxout网络增强网络整体的非线性映射能力,通过全连接网络输出预测结果。与支持向量机、长短期记忆网络的算例结果对比表明,所提方法具有更高的预测平稳性和准确性。  相似文献   

15.
通过更多信息特征或高频采样技术提高识别准确率的负荷监测算法,会增加信息采样阶段的成本和边缘数据处理的难度,提出一种基于有限低频信息的非侵入式负荷监测算法。设计最佳事件检测器,该检测器根据滑动窗口采集聚合负荷数据,并根据统计特征指标判断电器投切位置;将事件发生前后的功率序列作为识别特征,利用互补集合经验模态分解算法分解出功率序列中的多阶本征模态函数和最终趋势,绘制分解结果的二维图像并将其输入卷积神经网络进行训练和识别,从而实现仅基于有限低频采样信息就可高精确率地识别负荷。基于公开数据集的仿真结果验证了所提算法的有效性。  相似文献   

16.
非侵入式负荷监测中虽然高频采样能提高负荷辨识准确率,但对数据采集设备要求高,难以推广,因此,低频采样下负荷辨识方法成为研究热点。以低频采样下负荷投入时的暂态电流波形为特征,采用卷积神经网络算法实现负荷辨识,辨识结果发现CNN对暂态电流波形差异大的负荷辨识准确度高,但是对暂态电流波形相似的负荷识别准确率低,为解决这一问题,在卷积神经网络辨识的基础上,对暂态电流波形相似的负荷,以暂态电流幅值为特征作进一步辨识,以提高辨识准确率。通过使用实测数据进行验证,结果表明所提算法可以很好地克服低频采样下波形特征相似负荷识别准确率低的问题。  相似文献   

17.
非侵入式负荷监测(NILM)是智能用电行为辨识中的关键组成部分。由于中压配电网下的负荷同时接入种类繁多,并且多具备变频功能,不具备恒功率特性,现有的聚焦于家庭中的负荷辨识方法难以直接应用在类似的复杂设备环境中。文中针对复杂设备环境中的负荷特点,选取了电梯作为典型负荷进行了负荷辨识实验,使用符合IEC 61000-4-30的测量数据作为输入,目标为辨识电梯是否处于运行状态。为了消除无关特征造成的运算压力,提出了基于皮尔逊相关系数的差分特征提取方法,结合卷积神经网络实现了实际含多未知负荷环境中的电梯负荷状态辨识。使用实测数据的结果表明,该方法仅需少量样本辨识出运行功耗变化复杂的电梯运行状态,且计算精确度要高于传统机器学习方法。  相似文献   

18.
母线负荷预测对于电网调度运行的安全性和在线分析决策的准确性具有重要的意义.为了进一步提高母线负荷预测精度,提出了一种基于多源数据和模型融合的超短期母线负荷预测方法.结合当前电力大数据,首先将历史负荷数据、日期信息以及天气信息等多类型数据作为预测模型的输入特征,并建立基于BP-ANN(back propagation)神...  相似文献   

19.
针对传统运维知识库不具备图像故障现象识别能力,无法处理非结构化数据的问题,基于深度学习的故障分类网络,提出改进胶囊网络特征提取结构的Caps-DRFN算法,实现机电设备运维图像自动分类。首先,针对运维图像存在的多噪声问题,引入深度残差收缩网络(deep residual shrinkage networks, DRSN)提高模型在含噪声数据上的特征提取效果。然后,针对实际拍摄的运维图像多尺度问题,结合FPN(feature pyramid networks)算法,实现图像多尺度特征融合提高模型分类准确率。最后,利用胶囊结构构建向量神经元,通过动态路由的特征传递方式,得到分类结构数字胶囊,实现机电设备故障分类。实验结果表明,相较于传统胶囊网络算法,提出的基于特征融合的Caps-DRFN算法准确率提高了15%且有着更强的鲁棒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号