共查询到14条相似文献,搜索用时 78 毫秒
1.
采用四硼酸锂-偏硼酸锂混合熔剂[m(Li2B4O7)∶m(LiBO2)=67∶33],稀释比为8∶1,脱模剂为10滴300 g/L碘化铵溶液,预氧化温度和时间分别是600 ℃和200 s,熔融温度和时间分别为1 050 ℃和7.5 min的熔样条件,实现了熔融制样-X射线荧光光谱法(XRF)对石灰石和白云石中CaO、MgO、SiO2、Al2O3、Fe2O3、MnO、K2O、P2O5等组分的准确测定。选择石灰石、白云石标准样品及由标准样品人工合成的校准样品进行校准曲线的绘制,各组分的相关系数均可达到0.99以上。采用OXSAS软件提供的AC+MC综合模式进行谱线重叠干扰校正和基体校正,效果良好。选择标准样品进行精密度考察,各组分测定结果的相对标准偏差(RSD,n=12)均小于3%。石灰石、白云石标准样品和实际样品的测定结果与认定值或其他方法测定值进行比较,结果基本相符。 相似文献
2.
研究了熔融制样-X射线荧光光谱法测定磁铁矿中7种组分的分析方法。考察了稀释比、硝酸锂氧化剂用量、溴化锂脱模剂用量等因素,在优化条件下进一步选择了熔融温度及熔融时间。按试样与熔剂稀释比为1∶20在1 050 ℃熔融10 min制成玻璃样片,直接用X射线荧光光谱法(XRF)测定磁铁矿中的TFe、CaO、MgO、Al2O3、SiO2、TiO2和S。选择含铁量不同的一组磁铁矿标准样品建立校准曲线,线性相关系数均不小于0.997 4。测定磁铁矿实际样品时,测定结果与化学法一致,相对标准偏差中TFe为0.29%,S为3.4%,其它组分在0.29%~2.5%之间。 相似文献
3.
采用无水四硼酸锂熔融制样,建立了用波长色散X射线荧光光谱(XRF)法测定三氧化钼中MoO3、Pb、Cu、SiO2、CaO、Fe2O3、K2O 7种组分的方法。以Mo为主要分析元素分别对仪器参数、分析谱线、曲线拟合进行了研究,并详细讨论了熔融法制样条件中熔剂的选择、脱模剂的选择、熔融温度和熔融时间的确定。采用经过多次化学分析的样品作为标准样品绘制校准曲线并选择相应校正程序进行校正。该法用于三氧化钼样品的分析,结果同湿法分析数据相吻合,能满足生产中三氧化钼样品中七种组分分析的需要。 相似文献
4.
菱镁矿、白云石的化学成分是钙镁质耐火材料检测的重要指标,由于菱镁矿、白云石烧失量大,加热易分解,灼烧后的试样放置时间长或放置方式不当,极易吸收空气中的水分和CO2,导致样品变质结块,影响测定结果的准确性,因此合理地优化测定条件对提高分析方法的准确度非常关键。实验采用熔融制样-X射线荧光光谱法(XRF)测定菱镁矿、白云石中CaO、MgO、SiO2、Al2O3、Fe2O3、P2O5含量。直接以烧失量测定后的试样质量作为试样量,最大限度地避免了空气中水分和CO2对称样量的影响,简化操作步骤,缩短检测时限。经试验确定采用Li2B4O7-LiBO2(m∶m=67∶33)混合熔剂,灼烧后样品与熔剂的稀释比为1∶10,NH4I溶液为脱模剂,熔融温度1050℃,熔融时间15min制备试样玻璃片。选取... 相似文献
5.
菱镁矿、白云石的化学成分是钙镁质耐火材料检测的重要指标,由于菱镁矿、白云石烧失量大,加热易分解,灼烧后的试样放置时间长或放置方式不当,极易吸收空气中的水分和CO2,导致样品变质结块,影响测定结果的准确性,因此合理地优化测定条件对提高分析方法的准确度非常关键。实验采用熔融制样-X射线荧光光谱法(XRF)测定菱镁矿、白云石中CaO、MgO、SiO2、Al2O3、Fe2O3、P2O5含量。直接以烧失量测定后的试样质量作为试样量,最大限度地避免了空气中水分和CO2对称样量的影响,简化操作步骤,缩短检测时限。经试验确定采用Li2B4O7-LiBO2(m∶m=67∶33)混合熔剂,灼烧后样品与熔剂的稀释比为1∶10,NH4I溶液为脱模剂,熔融温度1050℃,熔融时间15min制备试样玻璃片。选取12种国家标准样品绘制校准曲线,线性相关系数为0.9997~0.9999。对菱镁矿、白云石标准物质进行精密度试验,各组分测定结果相对标准偏差(RSD,n=10)为0.14%~1.6%;应用实验方法对菱镁矿、白云石标准样品进行测定,结果与认定值基本一致,各组分的相对误差(n=5)为0.15%~5.88%。 相似文献
6.
铝矿中主、次及微量成分含量对生产工艺及产品质量具有重要影响,传统的检测方法操作过程繁琐,分析周期长,已难以满足检测需求。实验采用熔融法制样,样品经硝酸锂预氧化后,选择质量比为12∶22的Li2B4O7和LiBO2混合试剂作为熔剂,熔剂与样品比例为10∶1,以NH4I为脱模剂,在1050℃下熔融10min制备熔片。采用有证标准物质及其与高纯Al2O3的人工合成样品为校准样品,对谱线重叠情况进行了考察,并通过变化的理论α系数法校正元素间的吸收增强效应,建立了铝矿中Al2O3、SiO2、Fe2O3、CaO、MgO、P2O5、Na2O、K2O、TiO2、MnO、Ga2O3、ZrO2、V2O5、Cr2O3及S等15种组分的X射线荧光光谱法(XRF)。精密度实验表明,各组分测定结果的相对标准偏差(RSD,n=9)在0.18%~12%之间;对标准样品进行正确度考察,测定值与认定值一致。方法可同时满足铝土矿、叶蜡石、莫来石、矾土、高岭土等多种铝矿的测定。 相似文献
7.
钒钛磁铁矿中的铁和伴生组分是制造钢铁、合金的主要材料,以往采用多方法结合测定其主次元素,测量周期长,成本高。实验采用混合熔剂熔融制样后,使用X射线荧光光谱法(XRF)测定钒钛磁铁矿中TFe、TiO2、SiO2、Al2O3、CaO、MgO、V2O5、Cr2O3、MnO、K2O、Na2O、P等12种主次组分。为了防止试样对铂-金坩埚的腐蚀,采用预先烧失量处理。称量0.3000g样品与6.000g混合熔剂(m(Li2B4O7)∶m(LiBO2)=67∶33)于1050℃熔融,在熔样过程中添加溴化锂作为脱模剂。选用标准样品绘制校准曲线,采用理论α系数进行计算,校准曲线回归精度(SEE)小于0.3;方法中各组分检出限小于100μg/g。选取同一个样品进行熔融制样,并采用XRF测定其中TFe、TiO2、SiO2、Al2O3、CaO、MgO、V2O5、Cr2O3、MnO、K2O、Na2O、P等组分,测定结果的相对标准偏差(RSD,n=5)符合DZ/T 0130—2006《地质矿产实验室测试质量管理规范》要求。选取4个样品,分别按照实验方法和其他方法(分别采用滴定法、电感耦合等离子体原子发射光谱法、分光光度法等)对上述12种组分进行测定,两种方法所得测定结果差值均符合DZG 93—07《岩石和矿石分析规程》中《钒钛磁铁矿石分析规程》所要求的允许误差范围。 相似文献
8.
使用Li2B4O7和LiBO2混合熔剂(质量比为67∶33),NH4NO3作氧化剂,饱和LiBr溶液作脱模剂,在电加热熔样机上制备玻璃熔片,建立了波长色散X射线荧光光谱法(WD-XRF)测定钛铁矿物中TiO2、TFe、SiO2、A12O3、V2O5、MgO、CaO、S、P、Na2O的分析方法。实验表明,在熔样比例(质量比)为15∶1、熔样温度为1 100 ℃、熔样时间为15 min时熔样效果最佳。在最佳实验条件下,在自制钛铁矿标准样品的含量范围内,各组分的含量与其荧光强度呈线性关系,相关系数在0.995 6~0.999 7之间。采用基本参数法对基体效应进行校正后,平行测定样品10次,所得结果的相对标准偏差除P为9.8%外,其它各组分均不大于1.3%。采用实验方法对钛铁矿样品中各组分进行测定,所得结果和湿法测得值一致。 相似文献
9.
实验采用熔融法制样,以X射线荧光光谱法(XRF)实现了菱镁矿中MgO、Al2O3、SiO2、P2O5、CaO、TiO2、MnO、Fe2O3主次量组分的测定。选择白云岩、水镁石和石灰石国家一级标准物质及人工合成校准样品绘制校准曲线解决了高含量MgO和低含量CaO的测定问题。先测量样品灼烧减量,用灼烧后的样品进行熔片,以消去灼烧减量的含量与X射线荧光强度建立校准曲线,并进行基体校正,测出未知样灼烧后的含量后,再换算为样品实际含量。灼烧后样品与熔剂Li2B4O7的稀释比为1∶10,加入1滴LiBr溶液(1.0 g/mL)作为脱模剂,在1 050 ℃熔融9 min制备熔片。各组分校准曲线的相关系数在0.997 6~0.999 9之间;方法检出限在10~320 μg/g之间。对一菱镁矿实际样品进行精密度考察,各组分测定结果的相对标准偏差(RSD,n=12)在0.25%~3.6%之间。所建方法应用于菱镁矿标准物质和实际样品的测定,结果与标准物质认定值或实际样品湿法值基本一致。 相似文献
10.
针对蛇纹石主次组分同时测定中存在的问题,实验以Li2B4O7-LiBO2(m:m=33:67)为熔剂,碘化铵和溴化铵做脱模剂,熔融法制备样品,建立了X射线荧光光谱法(XRF)测定蛇纹石中SiO2、MgO、Fe2O3、Al2O3、CaO等主次成分的方法。优化后的熔融条件如下:稀释比为10:1,加入4 滴400 g/L NH4Br溶液和14 滴400 g/L NH4I溶液做脱模剂,在700 ℃预氧化4 min,再升温到1 050 ℃熔融6 min。选择与蛇纹石矿物相似的滑石、水镁石、非金属矿石物化性能和化学成分分析国家标准物质进行互配,采用基本参数法校正基体效应后,建立校准曲线,解决了蛇纹石标准物质缺失的问题。方法的检出限为80~170 μg/g。对1个东海蛇纹石样品进行精密度考察,测定结果的相对标准偏差(RSD,n=10)均不大于0.70%;采用实验方法对两个蛇纹石样品进行分析,并与行业标准方法HG/T 3575—2006测定结果进行对照,结果相符。 相似文献
11.
石灰石属碳酸盐矿物,灼烧减量大。已有系列化学分析方法用于石灰石的分析,但这些化学分析方法操作步骤繁杂,化学试剂用量大,分析周期长。实验建立了波长色散X射线荧光光谱法测定石灰石中CaO、MgO、SiO2、Fe2O3、Al2O3含量的方法。以测量灼烧减量后的灼烧基试样作为试料,Li2B4O7为熔剂,50 g/L NH4I溶液为脱模剂,稀释比为1∶10,于1 050 ℃熔融成试料片,以石灰石标准物质作为标准试料制作校准曲线。各待测组分校准曲线的相关系数在0.993 1~0.999 7之间;精密度考察发现,各组分测定结果的相对标准偏差(RSD,n=11)在0.13%~2.1%之间;标准物质的测定值与认定值的偏差在0~0.39%之间。实验方法最大限度地降低了灼烧基试料吸收空气中水分和CO2对测定结果的影响。 相似文献
12.
探讨了熔融制样-X射线荧光光谱法测定锰矿中TMn、TFe、SiO2、Al2O3、CaO、MgO、TiO2 、P2O5、K2O等常见组分的分析方法。对试样进行烧损校正,采用国家标准物质和以国家标准物质为基体制备的校准样品,建立了基体校正后的校准曲线。通过试验确定以四硼酸锂为熔剂、硝酸铵为氧化剂、熔融中间和定型前分2次加入总量为0.15 g的NH4I脱模剂,采用1∶12.5的稀释比例高温熔融制样。方法用于锰矿标准样品与实际样品分析,标准样品的测定值与认定值一致,实际样品的分析结果与其他方法的结果吻合,满足了生产现场快速分析的需要。 相似文献
13.
选用混合熔剂(Li2B4O7-LiBO2-LiF)熔融制样,用X射线荧光光谱仪对锰矿样品中的Mn、TFe、SiO2、Al2O3、CaO、MgO、K2O、Na2O、TiO2、P、S、BaO、Cu、Co、Ni、V、As等17种主次组分进行测定。以NH4NO3为氧化剂、Li2CO3为保护剂可使锰矿中的S与As在预氧化时转化为稳定的盐形式,从而防止S、As在熔样过程中的挥发损失。加入Cr2O3做Mn的内标可消除基体效应对Mn测定的影响。对锰矿石合成标样进行精密度考察,相对标准偏差(RSD,n=12)均小于10%:对锰矿石标准样品及合成样品进行准确度考察,测定值与认定值或湿法测定值一致。 相似文献
14.
采用熔融法制样,建立了测定化工产品钾冰晶石中氟、铝、钾、钠、氧化铁、氧化钛、氧化镁、氧化钙及硫酸根的X射线荧光光谱(XRF)分析方法。样品的熔融试验发现,以四硼酸锂和偏硼酸锂混合熔剂[m(四硼酸锂)∶m(偏硼酸锂)=67∶33]作熔剂,当样品与熔剂的稀释比为1.5∶10,以1滴饱和LiBr溶液为脱模剂,在1 000 ℃下熔融10 min时制样效果最佳。使用理论α系数法和经验系数法相结合的方法对谱线重叠及元素间的吸收增强效应进行校正。在没有国家标准样品的条件下,采用高纯的化学物质按不同比例混合制成的校准样品绘制校准曲线,其线性范围宽。精密度试验结果发现,各组分的相对标准偏差(RSD, n=11)在0.53%~9.8%之间。采用实验方法对钾冰晶石生产样品中上述9种成分进行测定,结果与其他方法测定结果相符。 相似文献