首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了提高铝合金材料的表面性能,利用激光熔覆技术,在6063铝合金表面制备了添加不同含量Y_2O_3的Ni60合金熔覆层,并采用金相显微镜(OM)、X射线衍射仪(XRD)、扫描电镜(SEM)和能谱分析测试仪(EDS)、显微硬度计等分析检测设备对激光熔覆层的组织、相结构、成分、显微硬度进行了测试和分析。研究结果表明:适当的Y_2O_3添加量可改善熔池对流,减少内含物,并有效控制熔覆层中的气孔和裂纹;XRD分析表明不同Y_2O_3含量的Ni60熔覆层表面主要的相结构为β-Ni Al(Cr),Al_3Ni,AlNi_3,Al等,添加较多Y_2O_3后出现Y_2O_3,YAl_3,AlNiY,Ni_(17)Y_2等稀土化合物的衍射峰;加入Y_2O_3后Ni60熔覆层元素分布比较均匀,稀释率有所降低,孔隙率减小,晶粒得到细化;Ni60熔覆层的平均显微硬度为HV 1017.6,5%Y_2O_3+Ni60熔覆层硬度为HV 1225.8,5%Y_2O_3+Ni60熔覆层硬度较高且硬度值随着熔覆层深度的过渡较为平缓。  相似文献   

2.
为了提高铝合金材料的表面性能,使其具有较高的硬度和耐磨性,利用激光熔覆技术在6063铝合金表面制备了添加稀土氧化物CeO2的Ni60合金熔覆层。分析了激光熔覆CeO2+Ni60熔覆层的宏观形貌、显微组织及硬度,研究了其摩擦磨损性能,并与未添加稀土的Ni60合金熔覆层和铝合金基体进行了对比研究。结果表明,加入2%CeO2可降低Ni60熔覆层表面起伏,获得较好的熔覆层宏观形貌,同时有效地减少Ni60熔覆层中的裂纹、孔洞和夹杂物,促进晶粒细化,提高熔覆层的组织均匀性;添加2%CeO2的Ni60熔覆层比未加稀土的Ni60熔覆层组织更加均匀,晶粒较细小,气孔等组织缺陷更少,熔覆质量较好;在相同深度位置的显微硬度,2%CeO2+Ni60熔覆层明显高于Ni60熔覆层,2%CeO2+Ni60熔覆层最高硬度可达HV0.051180,是6063铝合金基体平均硬度的8.4倍;在相同磨粒磨损条件下,2%CeO2+Ni60熔覆层试样的耐磨性是铝合金基体的7.1倍,是Ni60熔覆层试样的1.6倍;激光熔覆Ni60可以显著降低铝合金表面摩擦系数,而添加稀土元素Ce能提高Ni60熔覆层的摩擦系数稳定性,从而改善耐磨性能。  相似文献   

3.
NiCrBSiC合金大面积激光熔覆层性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
李刚  邱星武  邱玲  况军  相珺 《冶金分析》2008,28(10):1-1
采用CO2激光器及LASERCELL-1005六轴六联动三维激光加工机床在40Cr钢上进行激光熔覆处理。利用扫描电镜、X射线衍射仪、显微硬度计、电化学测试系统、磨料磨损试验机等设备对熔覆层组织、硬度、磨损、腐蚀性能进行研究。结果表明:大面积激光熔覆层主要由Cr23C6,Ni3B,(Fe,Ni),Ni等相组成。激光熔覆层的显微硬度值在420~1 320 HK之间。熔覆层的硬度、耐磨性和耐蚀性与基体相比均有较大的提高;大面积激光熔覆层的显微硬度、耐磨性、耐蚀性均不及单道激光熔覆层;多层叠加熔覆层的耐蚀性能优于  相似文献   

4.
采用激光熔覆技术,在20Cr基体上熔覆了硬度较高的Ni60+35WC-Ni耐磨涂层,并与Ni60涂层进行比较。采用扫描电子显微镜(SEM)、能谱分析仪(EDS)和X射线衍射分析仪(XRD)对涂层的微观组织、元素成分和物相进行了表征分析,测试了涂层沿深度方向上的显微硬度,在20和300℃条件下进行了点接触干滑动摩擦磨损试验,并利用SEM和EDS对磨损表面进行微观组织和元素成分分析。结果表明:Ni60+35WC-Ni涂层所含物相主要包括Fe-Ni,Cr7C3和WC,硬质相WC和Cr7C3有利于提高涂层的硬度和耐磨性。Ni60+35WC-Ni涂层的平均显微硬度约为基体平均硬度的3倍。与Ni60涂层相比,Ni60+35WC-Ni涂层的平均硬度较高,且其中含有硬质相WC,磨损量较小。在相同温度条件下,Ni60+35WC-Ni和Ni60两种涂层的摩擦系数相差不大。对于同一涂层而言,300℃时涂层的摩擦系数明显低于20℃下的摩擦系数,但磨损量随温度增加而增加。  相似文献   

5.
利用激光熔覆法在45#钢基材表面制备原位生长VC-WC-W2C颗粒强化镍基熔覆层,并采用静态浸泡法研究该熔覆层在10%H2SO4溶液中的腐蚀性。结果表明:不同V2O5+WO3+C含量的镍基熔覆层在10%H2SO4溶液中均表现出较好的耐蚀性,其中25%(V2O5+WO3+C)镍基熔覆层的耐蚀性最强,约为纯Ni60熔覆层的3倍。  相似文献   

6.
激光熔覆Fe基TiC涂层的组织与性能   总被引:1,自引:0,他引:1  
采用激光熔覆方法在45#钢基体上制备含TiC质量分数为20%~50%的Fe基TiC复合涂层。分别用扫描电镜(SEM)、能谱仪(EDS)、X线衍射(XRD)、显微硬度计、摩擦磨损机对熔覆层的微观组织、物相、硬度及耐磨性进行研究。结果表明:当TiC质量分数为30%时,涂层组织致密,TiC颗粒分布均匀、部分溶解、尺寸减小;涂层主要是由α-Fe固溶体,Fe C,Fe B,B4C,B4Si,Cr5B3,Ti B以及未溶解的TiC等组成;当TiC质量分数为30%时,熔覆层平均维氏硬度为783.8,磨损率为45#钢基体的1/38。  相似文献   

7.
采用预涂和感应重熔方法在45#钢上制备了Ni60熔覆层.对熔覆层的宏观照片、SEM、EDS、XRD和硬度进行了分析.结果表明:A+B粘接剂可以制备重熔效果良好的熔覆层.重熔后试样表面有大量灰黑色残渣,局部有些凸凹不平.重熔后界面附近的显微组织分为三部分:基体--过渡区--涂层熔覆区.涂层熔覆区为Ni基的,其上分布着块状...  相似文献   

8.
在Ti811钛合金板表面利用同步送粉激光熔覆技术,制备了Ni45+TC4多道搭接激光熔覆层。采用X射线衍射仪(XRD)、扫描电镜(SEM)分析了熔覆层微观组织和相组成,采用显微硬度计测试熔覆层的显微硬度,使用摩擦磨损试验机测试熔覆层的耐磨性。结果表明,熔覆层的基底α-Ti上分布的生成相主要包括TiB_2、TiC以及金属间化合物Ti_2Ni;当组织应力和拉应力超过镍基熔覆层抗拉强度极限时,熔覆层内部和表面均出现开裂现象;熔覆层显微硬度处于1000HV_(0.5)~1200HV_(0.5)之间,较基底提高了大约2.38倍以上;熔覆层摩擦系数处于0.45~0.48之间,大约为基底的68%。  相似文献   

9.
不锈钢表面激光熔覆镍基合金层研究   总被引:2,自引:1,他引:1  
采用多层多道搭接的激光熔覆方法在0Cr18Ni10Ti不锈钢表面上分别熔覆两种镍基合金涂层.1#合金涂层的硬度在HRC34左右,无开裂;2#合金涂层的硬度在HRC47左右,易开裂.采用硬度较低的1#合金涂层作为过渡层成功解决了2#合金涂层的开裂问题,成功制备出大面积较厚涂层.经光学显微镜(OM)、X射线衍射(XRD)、扫描电子显微镜(SEM)以及能谱(EDS)分析可知,大面积熔覆层的表层主要由γ-Ni枝晶、块状γ-Ni和M12C型碳化物增强相组成.显微硬度测试表明,表层平均硬度达HV0.2583,自熔覆层表层至基体,显微硬度逐渐降低.  相似文献   

10.
利用Ni3Al/25%Cr3C2混合粉末和激光熔覆技术,在45钢表面制备了Ni3Al基合金熔覆层,研究了熔覆层组织特征与耐磨性能。结果表明,Ni3Al基合金熔覆层组织主要为Ni3Al、NiAl和原位自生M7C3型碳化物。熔覆层显微硬度为599.6 HV0.1,约为45钢基板平均显微硬度的2.73倍。由于细小M7C3弥散分布于熔覆层中,Ni3Al基合金熔覆层具有良好的磨损性能。熔覆层磨损机制为磨粒磨损,摩擦因数约为0.55,磨损率为1.12×10-5mm3/N·m,约为蠕墨铸铁磨损率的28.6%。  相似文献   

11.
基于Materials Studio软件对TiC陶瓷颗粒的生长机制进行仿真分析,对其形貌进行合理预测。为了验证仿真结果的准确性,在H13钢基体上制备了(Ti+C)/Ni60激光熔覆层。利用扫描电镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)、显微硬度计等对涂层中TiC的形貌以及涂层的物相和硬度进行了检测分析。结果表明,仿真预测得到的TiC陶瓷颗粒在形貌上和实验结果具有较高的一致性,TiC颗粒平面形状以正方形、菱形等四边形为主,在熔覆过程中,熔覆环境、物相生长抑制、固液相作用是导致预测形貌和实际形貌存在一定差异的主要原因。原位制备的TiC陶瓷颗粒在涂层中分布均匀,整个涂层的显微硬度得到明显提高。  相似文献   

12.
为了提高铝合金材料的表面性能,利用激光熔覆技术在6063铝合金表面制备了添加有La2O3的Ni60合金熔覆层。分析了激光熔覆La2O3+Ni60熔覆层的显微组织及硬度,研究了其耐腐蚀性能,并与Ni60合金熔覆层和铝合金基体进行了对比。结果表明,加入2%La2O3可有效地减少熔覆层中的裂纹、孔洞和夹杂物,促进晶粒细化,提高熔覆层的组织均匀性和表面硬度;在3.5%的NaCl溶液中,La2O3+Ni60熔覆层耐蚀性较未处理Al合金提高了6倍,较Ni60熔覆层提高了4.3倍;在1mol/L H2SO4溶液中,La2O3+Ni60熔覆层耐蚀性较未处理Al合金提高了19.6倍,较Ni60熔覆层提高了1.98倍;在1 mol/LNaOH溶液中,La2O3+Ni60熔覆层试样的耐蚀性较未处理的Al合金提高了99倍,较Ni60熔覆层提高了1.03倍。  相似文献   

13.
在304不锈钢表面采用半导体激光熔覆制备Ni包B_4C涂层,研究激光加工参数对涂层的组织形貌、物相组成、硬度和耐磨性能的影响。结果表明,当激光功率为3 k W和扫描速度为6 mm/s时,熔覆层无气孔、无裂纹,与基体呈冶金结合;熔覆层的显微组织为枝晶共熔体和再生的二次枝晶,熔覆层的主要物相由γ-Ni,Ni_4B_3,Fe_3C,B_4C,B_(13)C_2,Cr_3Ni_2,(Fe,Ni)23C6和Fe_(23)(C,B)_6等组成;熔覆层具有较高的硬度(平均值为900 HV_(0.2)),耐磨性是基体的7.6倍,硬度和耐磨性的提高归因于熔覆层中未完全熔解的B_4C颗粒以及新形成的强化相和硬质相。  相似文献   

14.
为提高液压活塞杆的耐腐蚀和抗磨损性能,在45号钢表面采用激光熔覆技术在不同激光功率下制备具有马氏体/铁素体组织的Fe基合金熔覆层。利用X射线衍射仪、扫描电镜、X射线能谱仪等手段表征涂层的物相组成、微观形貌和元素分布,采用维氏硬度计和干滑动摩擦试验机对涂层的显微硬度和抗磨损性能进行测试,并通过电化学工作站研究熔覆层的耐腐蚀性能。结果表明:Fe基合金熔覆层的主要物相为α-Fe、Ni-Cr-Fe、γ-(Fe,C)和Fe9.7Mo0.3等,主要组织为马氏体、铁素体和少量残余奥氏体。熔覆层的枝晶态组织均匀致密,无裂纹和孔隙缺陷,涂层与基体呈冶金结合。涂层的硬度与耐磨性能随激光功率增大而提高,当功率为2.4kW时,涂层的平均显微硬度(HV)为647.64,耐磨性能为45号钢的9.37倍,磨损机制为磨粒磨损。随激光功率提高,Fe基合金熔覆层的耐腐蚀性能先升高后降低,当激光功率为2.0 kW时涂层具有最佳耐腐蚀性能,显著高于活塞杆常用碳钢、不锈钢以及电镀硬铬等材料,可在相关领域替代电镀铬。  相似文献   

15.
42CrMo钢表面高频感应熔覆WC增强镍基复合涂层的研究   总被引:1,自引:0,他引:1  
通过高频感应加热在42CrMo钢表面熔覆制备0.5 mm厚的WC增强Ni60复合涂层。通过电子显微镜、显微硬度计、能谱仪、X射线衍射仪以及万能摩擦磨损实验机研究分析了图层的组织形貌、相结构、硬度和耐磨性。结果表明:熔覆层组织均匀,主要由WC、W_2C、Cr_(23)C_6、Cr_7C_3、FeNi、Ni_3Fe等相组成,与基体呈冶金结合并伴随有大量合金元素的扩散,结合界面较致密,无明显夹杂等缺陷,结合强度高;熔覆层组织致密,硬度分布较为均匀,WC增强Ni60复合熔覆层耐磨性相比淬火态42CrMo有较大提高。  相似文献   

16.
以Ti、C、Nb粉和Ni60A合金粉末为原料,采用氩弧熔覆技术在16Mn钢基材表面分别制备(Ti,Nb)C颗粒增强Ni60A复合涂层(C-Ti-Nb-Ni60A涂层)和Ni60A涂层。应用金相显微镜(OM)、扫描电镜(SEM)、X射线衍射(XRD)对2种涂层的显微组织和物相进行观察与分析,测试涂层的显微硬度和不同载荷下的磨损性能,分析磨损机制。结果表明:C-Ti-Nb-Ni60A复合涂层与基体间呈冶金结合,界面间无气孔和裂纹;C-Ti-Nb-Ni60A复合涂层的显微硬度较基体16Mn钢提高近5倍,较Ni60A涂层提高0.45倍;常温干滑动200 N载荷条件下,CTi-Nb-Ni60A复合涂层的耐磨性能较基体16Mn钢提高6倍,较Ni60A涂层提高近2倍。16Mn钢表面发生严重的磨粒磨损和粘着磨损,Ni60A涂层表面以磨粒磨损为主,C-Ti-Nb-Ni60A复合涂层的磨损机理为显微檫伤磨损。  相似文献   

17.
为了改善钛合金的硬度和耐磨性能,利用5 k W YLS-5000光纤激光器,在TC4合金表面分别激光熔覆纯Ti粉、Ti-15%(Mo+Si)和Ti-30%(Mo+Si)混合粉末(质量分数,Mo与Si原子比为1∶2),通过正交实验选择合适的功率和扫描速度等工艺参数,得到3种不同的涂层,利用金相显微镜(OM)、扫描电镜(SEM)对熔覆层的微观组织进行观察和研究、X射线衍射仪(XRD)研究熔覆层相组成,用显微硬度仪测得3种熔覆层的硬度。结果发现,功率为3 k W扫描速度10 mm·s-1得到熔合较好,缺陷较少的熔覆层。熔覆纯钛粉涂层组织为细小针状马氏体α'相,熔覆Ti-15%(Mo+Si)涂层在界面处共析出白色条状Ti Si2,熔覆Ti-30%(Mo+Si)涂层上部出现了镶嵌在涂层中的分块状Mo5Si3,MoSi2硬质相,而且白色晶间析出物增多,XRD结果显示β相增多。3种涂层熔覆区硬度有很大的区别,熔覆纯钛粉涂层平均硬度为HV0.2500左右,熔覆Ti-30%(Mo+Si)涂层最高硬度达到了HV0.21120,是基体的3.4倍左右。分析比较了3种涂层组织差异的原因,Mo,Si元素添加对钛合金组织的影响,结合热力学分析,探讨混合粉末形成Mo Si2的反应机制。  相似文献   

18.
采用同轴送粉激光熔覆技术在45~#钢基材表面制备Fe-Mo-V-C合金涂层。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)等测试分析手段表征涂层的物相组成、组织形貌和元素分布。采用维氏硬度计和干滑动摩擦磨损试验机测试涂层显微硬度和摩擦磨损性能,并分析其摩擦磨损机理。结果表明:激光熔覆Fe-Mo-V-C合金涂层的主要物相成分为α-Fe相与(α-Fe,Ni)、Fe_4V、Fe_(9.7)Mo_(0.3)等铁基合金相,VC、V_8C_7、VB、Fe_3C等金属间化合物相,以及铁基金属相与渗碳体组成的共晶组织;涂层致密均匀,细小的硬质颗粒在金属基体中呈均匀、弥散、密集分布。当熔覆功率为1 600 W时,涂层平均显微硬度达1 020 HV0.2,其耐磨性是基材的14倍。VC等硬质颗粒的"弥散强化"赋予涂层高硬度,在磨损过程中起到"扎钉"和"抗磨骨架"作用,大幅提高了铁基涂层的耐磨性。  相似文献   

19.
以高碳铬铁粉和铁基合金粉末作为涂覆粉末,通过真空感应熔覆技术在45号钢表面获得具有较高硬度的复合涂层,并实现熔覆层与基体材料良好的冶金结合。通过宏观洛氏硬度测试、微观显微硬度测试、X射线衍射分析、显微组织分析、能谱分析进一步分析复合材料的组织结构和性能指标。分析结果显示:熔覆层的表面洛氏硬度HRC能够达到63以上,由熔覆层向基体材料内部显微硬度呈梯度分布;硬质增强相主要是Cr7C3、Cr2B等物相组成,分布在熔覆层和过渡区中,提高了涂层硬度。  相似文献   

20.
采用3kW高功率半导体激光器,在45钢基体上制备不同WC含量(质量分数20%~80%)的WC-NiSiB复合涂层,用扫描电镜(SEM)、能谱仪(EDS)及X射线衍射(XRD)对熔覆层的微观组织、成分分布及物相进行表征,并测试涂层试样的硬度与耐磨性能。结果表明,激光熔覆WC-NiSiB复合涂层组织主要由γ-Ni、WC、W2C、WB、W2B、Ni4B3及Ni4W等物相组成,熔覆层与基体形成冶金结合。涂层与基体的结合区,从熔合线开始逐渐向上的组织依次为垂直于界面的胞状晶、柱状晶和枝状晶,熔覆层中部为沿一定方向生长的树枝晶,表层为异向生长的细小树枝晶。随WC颗粒含量增加,涂层中WC颗粒分布更加密集。WC含量为60%时,WC颗粒分布均匀致密,熔覆层无裂纹,熔覆层的硬度最高达到1291HV,为NiSiB合金层硬度的2.7倍,耐磨性是NiSiB合金层的6.8倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号