首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
耿村煤矿2-3煤层自然发火期短,厚度大,瓦斯绝对涌出量大,采用以高抽巷为主的治理瓦斯模式导致采空区漏风大。为避免采空区遗煤自燃,实施了高抽巷埋管灌浆、上下隅角密闭封堵、进回风巷超前30 m施工防火钻孔注浆防火、下隅角埋管注氮、定期取样分析等综合防灭火措施,有效防止了采空区遗煤自燃。  相似文献   

2.
采空区顶板高位走向长钻孔高效抽采瓦斯机理研究   总被引:4,自引:0,他引:4  
为了提高采空区顶板高位走向长钻孔瓦斯抽采效率,消除工作面上隅角瓦斯超限事故,以山西华晋吉宁煤业有限责任公司2102综采工作面为研究对象,采用数值模拟、理论分析与现场试验相结合的方法,利用3DEC软件模拟计算2102综采工作面回采期间采空区顶板裂隙场演化过程,根据裂隙场、应力场和应变场分布模拟结果在沿工作面推进方向上划分采空区顶板裂隙加强区范围与压实区范围,工作面推进期间煤层顶板在时间上先后经历裂隙加强区和重新压实区,处于裂隙加强区的钻孔部分为钻孔高效抽采作用区域,钻孔高效抽采段长度与钻孔高效抽采段裂隙发育程度共同决定高位走向长钻孔抽采效率,揭示了采空区顶板高位走向长钻孔高效抽采瓦斯作用机制;在此基础上,在采空区顶板裂隙带高度范围内布置多个高位试验钻孔,进行钻孔瓦斯抽采效果考察,研究结果表明:在保证高位钻孔布置于回风巷内侧顶板裂隙带前提下,最佳布孔层位为距煤层底板60 m左右,同时在高位试验钻孔作用下,上隅角瓦斯体积分数最大值由1.1%降低至0.6%,说明根据回风巷内侧采空区顶板裂隙带高度范围,布置高位走向长钻孔能显著降低上隅角瓦斯浓度。  相似文献   

3.
为了研究高抽巷抽采与不同注氮条件结合下采空区自 燃氧化带的分布变化规律,在高抽巷抽采条件下,设置6种 不同的注氮释放口位置和4种不同注氮量,研究进、回风侧 采空区自燃氧化带的宽度及其距工作面距离的分布变化情 况.结果表明:设置高抽巷可以促使煤自燃氧化带向采空区 内部移动,且氧化带宽度增加;位置点5为最佳注氮释放口 位置,此时进风侧氧化带宽度最窄,距工作面距离最远,回风 侧氧化带宽度较窄且距工作面距离较远;最佳注氮量为360 m3/h,改变注氮量对采空区进风侧的影响大于回风侧,对氧 化带宽度的影响大于对距工作面距离的影响.  相似文献   

4.
张浩权 《煤炭工程》2022,54(7):74-78
为了解决坚硬覆岩突出煤层开采过程中高抽巷对上隅角瓦斯控制能力差的难题,以首山一矿12110工作面为研究对象,划分了坚硬覆岩工作面采空区近、远场瓦斯库的范围,采用数值模拟的方法,研究了近场瓦斯高效抽采区域,提出了基于低位顶板走向长钻孔的采空区近场瓦斯抽采技术。结果表明:低位顶板走向长钻孔的高效抽采区域为距垮落线30m范围内,合理抽采负压为15kPa,1—5号钻孔抽采瓦斯纯量为8.3m/min。基于低位顶板走向长钻孔的近场瓦斯抽采技术进一步降低了采空区瓦斯涌出量,与高抽巷、上隅角插管构成了采空区近场、远场、上隅角三位一体瓦斯抽采模式,将工作面上隅角瓦斯浓度控制在0.6%以下,确保了工作面的安全回采。  相似文献   

5.
为了对高瓦斯工作面采空区抽采钻场进行设计,使采空区及工作面上隅角瓦斯得到有效控制,通过数值模拟分析了采场覆岩结构及裂隙发育规律;根据模拟结果利用实验室试验分析了抽采钻孔在不同位置时采空区瓦斯的运移规律,得出终孔位置距煤层顶板上方30m左右,距回风巷水平距离10~20m时抽采效果最佳;且终孔高度应根据工作面覆岩结构形态有所区别,靠近回风巷的钻孔高度应控制在规则冒落带上部,靠近工作面中部的钻孔应布置在裂隙带内。  相似文献   

6.
通过对低瓦斯矿井综放工作面的瓦斯涌出来源及规律分析,有针对性的实施采空区埋管抽放瓦斯技术,并辅以上隅角插管抽放方式,同时提出上下隅角堆垛土袋墙、下隅角注氮等措施,从而得出最佳埋管抽放步距与防火关系,不仅提高了瓦斯抽放效果,有效防止了上隅角瓦斯超限,也防止了采空区遗煤自燃发生,保证工作面安全生产。  相似文献   

7.
针对正行煤矿1502综放工作面开采具有高瓦斯易自燃的特点,现场进行采空区"三带"测试,并对测试数据进行分析.运用气体渗流理论通过FLUENT6.3模拟了注氮的同时改变高抽巷抽采负压情况下采空区瓦斯浓度场、漏风场、氧气浓度场.通过FLUENT模拟技术,观察高抽巷不同抽采负压与回风巷上隅角瓦斯浓度大小之间的关系,并建立这种关系的拟合方程,计算出回风巷上隅角瓦斯浓度不超限时的最低抽采负压.根据模拟的注氮条件下不同负压抽采时漏风场和氧浓度场等值线图绘制出采空区自燃"三带"的划分图.得到了不同抽采负压与自燃带宽度之间的关系,并将这种线性关系拟合成方程,从而确定了高抽巷抽采负压的最佳范围,既可以预防上隅角瓦斯超限,又防止了采空区遗煤自燃事故的发生.  相似文献   

8.
耿铭  徐青云 《煤炭工程》2019,51(12):82-85
为了验证地面L型钻孔抽采采空区瓦斯效果,以塔山矿8214综放工作面为研究对象,采用数值模拟和理论分析相结合的方法,确定了抽放钻孔布置位置和钻孔结构,设计了L钻孔抽采瓦斯方案。研究结果表明:塔山矿8214综放工作面垮落带高度为35m,裂隙带高度为60m,顶板最大悬露空顶长度为45m,垮落角为45°国钻孔应布置在距采煤工作面顶板40~60m,距帮26~30m,有效解决了工作面上隅角和低位抽采巷的瓦斯超限的问题|钻孔的终孔始终位于工作面上隅角的后上方,有效解决了钻孔与工作面推进在瓦斯治理中的时空匹配问题,达到了高效稳定治理采空区瓦斯的目的。  相似文献   

9.
注氮条件下瓦斯抽采对采空区自燃“三带”的影响   总被引:1,自引:0,他引:1  
为了解决高抽巷抽采引起采空区漏风量增加导致采空区遗煤自燃倾向增大的问题,针对正行煤矿1502综放工作面开采具有高瓦斯易自燃的特点,采用现场实测与数值模拟相结合的方法,通过Fluent软件模拟了采空区未采取注氮和抽采措施、高抽巷抽采和注氮条件下高抽巷抽采等3种情况的采空区瓦斯浓度场、漏风场、氧气浓度场的变化情况,得出了采空区自燃"三带"分布范围:散热带0~23 m,氧化带23~69 m,大于69 m为窒息带;将采空区自燃危险性区域确定为23~69 m。根据以上结果,对注氮效果、抽采负压进行评价,完善了采空区在注氮条件下高抽巷抽采防灭火系统。  相似文献   

10.
深井高地温易导致煤层自然发火,朱集西煤矿11401工作面为深井孤岛工作面,为预防主采11-2煤及上覆11-3煤冒落进入采空区后氧化自燃,通过分析高地温对回采工作面煤层自燃特性、自燃环境的影响,梳理出造成采空区遗煤氧化的主要因素。针对11401工作面采空区环境和条件,在11401顶抽巷未施工到位的前提下,通过采取系统布点进行预测预报分析、顶板弱化、隅角封堵、切眼及两巷预埋防灭火管路灌浆覆盖、注氮惰化、架间撒浆、两巷钻场施工高位防火钻孔劈头灌浆等综合防灭火措施,降低了在工作面初采、过FD35断层期间高地温对采空区遗煤供氧、蓄热等的影响,延长了采空区遗煤的自然发火期,有效地防止了采空区防火标志性气体出现异常,保障了工作面稳定、安全生产。  相似文献   

11.
为了解决工作面上隅角瓦斯超限问题,提出了超大直径钻孔治理上隅角瓦斯技术,阐述了超大直径钻孔治理上隅角瓦斯技术原理。以五阳煤矿7609工作面排水巷为试验点,通过在7609排水巷和回风巷之间施工超大直径钻孔,然后进行应用效果考察,并对数据进行分析,结果表明:单孔抽采时钻孔间距25 m或者30 m均可满足治理上隅角瓦斯的目的,在抽采负压3 kPa左右时,五阳煤矿超大直径钻孔抽采影响范围可达78 m,能对深部采空区高浓度瓦斯有持续的抽采作用,超大直径钻孔治理上隅角瓦斯技术可有效控制工作面上隅角瓦斯浓度。  相似文献   

12.
针对西铭矿49405工作面巷道顶板向上覆采空区漏风,导致其遗煤自燃危险性增大的问题,通过现场漏风测定,借助FLUENT数值模拟软件,对开采极近距离下部煤层时上覆采空区自燃危险区域分布状态及防治措施进行研究。研究结果表明:巷道顶板漏风使上覆采空区存在近似呈“U”形分布的自燃危险区域,且在巷道顶板裂隙及风压双重作用下,上覆采空区存在自然发火隐患;采用钻孔单孔注氮分析不同注氮量对上覆采空区氧气、温度及自燃危险区域的影响,确定单孔最佳注氮量为120 m3/h,合理注氮孔间距为36 m。  相似文献   

13.
王伟东  王伟  李鹏  王刚 《煤矿安全》2020,(1):181-186
以五虎山煤矿010908工作面为背景,采用理论分析、数值模拟和现场实测等手段对浅埋深高瓦斯工作面瓦斯抽放对采空区自燃"三带"影响进行研究。研究结果表明:当瓦斯绝对涌出量与采空区漏风量处于均衡状态时,此时瓦斯对煤自燃将出现明显的耦合影响;当采空区漏风量小于瓦斯绝对涌出量时,采空区遗煤自燃将受到阻碍;与之相反,当漏风量大于瓦斯涌出量时,采空区遗煤自燃受瓦斯涌出量的影响较小;高位钻孔与工作面距离越远,采空区内部的漏风路径也越长,采空区氧化带、窒息带所处的区域越向采空区深部扩大,但靠近工作面一侧的氧化带范围并没有出现明显变化。  相似文献   

14.
为了解决五虎山煤矿010910工作面的遗煤氧化自燃问题,需要在010910工作面回风巷上隅角适当范围内,通过实施向上的定向观测兼治理钻孔以及010910工作面埋设的束管采样器,同时对上覆工作面采空区和010910采空区进行实时动态分层监测;复合采空区动态分层监测状态下出现CO浓度升高等遗煤自燃迹象后,利用上层施工的定向钻孔及本层回风巷的注浆管路,实施上下层高低位联合注浆治理措施。结果表明:实施高低位联合注浆后钻孔内CO气体浓度呈不断降低趋势,复合采空区注浆治理效果比较明显,能确保工作面正常回采。  相似文献   

15.
地面钻孔抽采导致采空区漏风增加,采空区内瓦斯及氧气浓度分布发生变化,影响采空区自燃危险性。采用数值模拟的方法,对不同钻孔抽采量和抽采位置条件下采空区氧化带宽度及瓦斯浓度分布情况进行了模拟,研究结果表明,经地面钻孔抽采后,采空区两侧瓦斯浓度降低,高浓度瓦斯位置整体后移,但自燃氧化带宽度随之增加。随着抽采流量增加,瓦斯浓度降低,氧化带宽度增加;在靠近工作面及采空区深部位置布置钻孔进行联合抽采时,瓦斯浓度及自燃氧化带分布较为理想。采用多孔联合抽采方式时,在合理的布孔间距和抽采流量条件下,既可以降低采空区瓦斯浓度又能控制自燃氧化带宽度范围,能够有效解决采空区瓦斯涌出与自然发火问题。  相似文献   

16.
王飞  谷晓玲 《煤炭技术》2021,40(2):145-147
为研究高瓦斯综放工作面采顶抽巷治理瓦斯和注氮与遗煤自燃三者的相互影响,寻找最佳的抽放量与注氮流量,进行实验分析;并分析了遗煤自燃抽放、注氮、温度场、O2场、CH4场影响关系图。实验表明:顶抽巷附近20 m范围内随抽放量的增加,O2浓度10%曲线逐渐向采空区延伸,采空区"三带"随之增加。受抽采半径及吸入工作面空气影响,抽放瓦斯纯度出现先增加后降低情形。随着注氮量的增加,进风侧"三带"变化浮动明显,并且对顶抽巷附近"三带"宽度也有所降低。"三带"降低率先增加后降低。81505工作面抽放量700 m3/min,注氮量2 200 m3/h时,有利于采空区防灭火。该研究为综放工作面采空区遗煤自燃治理提供参考。  相似文献   

17.
特厚煤层采用分层综放开采时,上分层遗煤易发生二次氧化,致使煤自燃预防和治理的难度加大。为了准确判定下沟矿ZF1801工作面上、下分层采空区遗煤自燃危险区域,通过程序升温实验分析4#煤层煤的自燃极限参数,并根据气体监测数据判定采空区遗煤自燃危险区域。研究结果表明:4#煤层煤的耗氧速率和放热强度随温度的变化均符合高斯型函数关系;随遗煤厚度的增加,下限氧气体积分数逐渐降低,而上限漏风强度逐渐升高;当遗煤厚度一定,温度达到90℃时二者的极限参数最低;遗煤自燃危险区域在ZF1801工作面下分层采空区回风侧20~125 m、宽105 m,在上分层回风巷、进风巷侧0~40 m、宽40 m;当ZF1801工作面推进速度低于2.34 m/d且停采28 d以上时,采空区存在自燃危险。研究结果可为下分层综放工作面末采期间采空区自燃危险区域判定提供参考。  相似文献   

18.
相邻工作面开采会导致复杂的漏风情况,浮煤易自燃,增大防火工作的难度。为明确相邻采空区自燃“三带”分布特征及确定最佳注氮防灭火参数,以贵州某矿4244工作面为背景,结合现场实测,应用Fluent流场分析软件,模拟研究不同注氮方案下采空区氧气浓度场分布规律。结果表明,实测结果与模拟相吻合,验证了模拟的可靠性;当注氮位置为X=50 m,注氮流量为100 m3/h时,采空区进、回风巷侧氧化带宽度分别为7 m和38 m,能明显减少本采空区氧化带面积,且能防止氧化带距工作面太近;此工作面进风侧注氮对相邻采空区氧化带影响范围较小,这要求在回采过程中需要对煤柱进行加固,降低孔隙率,控制漏风,减少氧气进入相邻采空区,降低煤自燃风险。模拟结果为相邻采空区灾害防治工作提供了的理论指导。  相似文献   

19.
为探究行之有效的“以孔代巷”瓦斯抽采技术,解决端氏煤矿高抽巷工程量大、经济成本高等问题,提出顶板定向长钻孔替代高抽巷治理采空区瓦斯模式。采用FLAC3D数值模拟确定3号煤层顶板以上15~45 m为最佳抽采层位,并基于定向钻进轨迹控制技术,在端氏煤矿3019工作面进行成孔试验。结果表明:钻进轨迹能够按照预设参数实施,成孔直径达153 mm,一次成孔深度420 m以上,钻孔进入稳定抽采阶段的平均抽采瓦斯浓度达18%、平均抽采瓦斯纯流量达8.7 m3/min,钻孔抽采条件下工作面瓦斯抽采率达36.7%,工作面上隅角瓦斯浓度控制在0.50%以下,解决了瓦斯超限问题。与高抽巷抽采技术相比,顶板定向长钻孔成本降低62.5%、施工工期缩短50%,验证了“以孔代巷”的合理性和可行性。  相似文献   

20.
李丹  苏现波 《煤炭工程》2022,54(4):79-85
地面L型井抽采采空区瓦斯不仅可减少工作面上隅角瓦斯积聚,而且可获取洁净能源,已在我国多个矿区进行了试验性应用,瓦斯治理效果和经济效益显著,但部分地面L型井抽采效果与预期目标仍有一定差距。为改进L型井瓦斯抽采效果,基于采场岩移“三带”理论及工作面瓦斯运移规律,全面分析了L型井抽采采空区瓦斯的影响因素,对其适应性和L型井水平段位置优选进行了研究。研究结果表明,地面L型井抽采采空区瓦斯技术适宜于采空区涌出量占比高、U型通风和仰采工作面、采空区瓦斯资源量多的高瓦斯工作面。L型井的水平段应靠近工作面回风巷侧布置,垂直方向上,其起始点至终孔点应呈一定的下向倾角,起始点和终孔点高度应分别位于裂隙带上部和下部|水平方向上应位于裂隙发育区内且尽量靠近回风侧边界,同时建立了L型井水平段起始点与煤层底板的垂直距离和距回风巷水平投影距离的计算方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号