首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
张艳  沈健 《冶金分析》2023,(2):73-79
镍基合金Inconel 625是耐蚀性能优异的合金,铬、钼、铌作为其主要成分,关系到产品性能,所以准确分析铬、钼、铌含量对产品的质量控制具有重要意义。采用盐酸、硝酸和氢氟酸经微波消解分解样品,溶液经稀释后,选择Cr 267.716 nm、Mo 204.598 nm、Nb 210.942 nm为分析谱线,Y 371.029 nm为内标谱线,使用电感耦合等离子体原子发射光谱法(ICP-AES)对镍基合金Inconel 625中铬、钼、铌进行测定。结果表明,样品中共存元素对待测元素的干扰可忽略。各待测元素的校准曲线线性相关系数均大于0.999 9。实验方法应用于镍基合金Inconel 625实际样品中铬、钼、铌的测定,测定结果的相对标准偏差(RSD,n=11)为0.23%~0.54%。按照方法测定镍基合金标准样品中铬、钼、铌,测定结果与标准值相吻合。  相似文献   

2.
朱莉 《冶金分析》2010,30(5):68-71
建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定镍铬钼系油井管中铝的分析方法。考察了镍、铬、钼、铁等元素对铝的测定干扰及干扰的消除方法。实验选择394.401nm作为铝的分析线,在此分析线下测定,基体元素铬、铁、镍有严重干扰,但铬的干扰可以在溶样时使铬形成氯化铬酰除去,铁、钼和镍的光谱干扰可以通过选择基体匹配及干扰系数校正方法克服。在优化的实验条件下,Al的测定下限为0.005%(质量分数)。该方法分析镍铬钼系油井管中铝时,检测值与标样认定值相符,相对标准偏差为0.6%(对铝质量分数为0.0176%的样品测定5次);回收率在102%~106%之间。  相似文献   

3.
利用电感耦合等离子体原子发射光谱法(ICP-AES)测定高纯钼样品中杂质元素含量时,由于钼元素具有丰富的谱线,因此钼基体对待测元素干扰较大。为了消除钼基体对待测元素的干扰,实验使用过氧化氢溶解样品,过量硝酸沉淀分离钼基体作为样品前处理步骤,建立了基体分离-电感耦合等离子体原子发射光谱法测定高纯钼中钙、铬、铜、钴、镁、镍、锌、镉和锰的方法。使用4mL过氧化氢溶解样品,10mL硝酸沉淀钼基体,钼的沉淀效率大于99%,沉淀后,各待测元素背景等效浓度均有下降,且回收率都高于85%,随沉淀损失较少。使用高纯钼基体沉淀分离的方法配制校准曲线,各待测元素校准曲线线性相关系数均大于0.9997;方法中各元素的定量限为0.20~2.03μg/g。实验方法用于测定高纯钼样品中钙、铬、铜、钴、镁、镍、锌、镉和锰,结果的相对标准偏差(RSD,n=5)为2.0%~4.8%,测定结果与电感耦合等离子体质谱法(ICP-MS)结果一致。  相似文献   

4.
X射线荧光光谱法测定不锈钢中15种元素   总被引:1,自引:0,他引:1       下载免费PDF全文
应用波长扫描X射线荧光光谱仪对不锈钢中铝、硅、磷、钛、铬、锰、钒、钴、镍、铜、钨、锡、砷、钼和铅等15种元素进行测定,各组分拟合在一套校准曲线中,将基本参数法和经验系数法相结合,用以校正共存元素间的吸收-增强效应和谱线重叠影响。精密度试验和比对试验表明:该方法分析铬镍不锈钢及高速工具钢系列中多个元素时,检测值与标样认定值相符,对内控样品的分析结果同其他方法的分析结果相一致;选用PbLβ1作为分析线时相对标准偏差为3.2%;高合金元素铬、镍、钨、钼测量偏差为0.01%~0.1%;分析一个样品需232 s,具有良好的稳定性。  相似文献   

5.
采用x射线荧光光谱仪测定GH4169合金中的锰、硅、镍、铬、钼、铝、钛、铌。研究了测量条件及基体 吸收—增强效应的校正。还时测量精度进行了研究,各元素的相对标准偏差分别为0.0466%~O.6777%。与 化学分析结果对照结果良好。  相似文献   

6.
刘攀  张欣耀  张毅 《冶金分析》2020,40(6):13-20
铬铝(铝铬)、钼铝(铝钼)中间合金是重要的钛合金用新型合金剂,准确测定其中的氧含量有利于从源头上指导钛合金的质量控制。称取(100±50)mg样品采用锡囊包裹,设定分析功率为5.0~5.5kW,采用钢铁标准样品校准仪器(分析功率4.0kW),使用石墨套坩埚进行测定,建立了脉冲加热-惰气熔融-红外吸收法测定铬铝、钼铝中间合金粉中氧含量的方法。对样品量、分析功率进行了优化,并重点探讨了锡囊、镍箔、镍篮为助熔剂对氧量测定的影响。结果表明,助熔剂对氧含量的释放有较大的影响;部分程度上,镍箔、镍篮或会抑制或阻碍氧化铝中氧的释放,造成铬铝、钼铝中间合金中氧的释放率和测定结果存在显著偏低及不稳定的质量风险。在选定的实验条件下,方法检出限、定量限分别为0.004%、0.012%,定量范围为0.012%~0.58%。按实验方法分析铬铝、钼铝合金粉状样品,结果的相对标准偏差(RSD,n=6)不大于6%,极差显著小于参考YS/T 1075.7—2015《钒铝、钼铝中间合金化学分析方法 第7部分:氧量的测定 惰气熔融-红外法》计算的临界差(1.4倍重复性限)。采用加入氧化铝粉的方法合成加标样品,氧化铝中氧的回收率为90%~109%。方法可适用于铬铝、钼铝中间合金粉中氧含量的测定,并有望在以铬、钼为合金元素的钛合金用新型铝基中间合金(如铝钼铬、钼钒铝、钒铝锡铬)中得到推广和应用。  相似文献   

7.
镍-铜-铁合金为不规则样品,采用离心浇铸法制样时单次只能制备一个样品。实验采用多功能熔融炉高频熔融浇注制备成蘑菇状块状样品,实现了X射线荧光光谱法(XRF)对镍-铜-铁合金中镍、铜、铁、锡、磷和硫含量的测定。通过优化多功能熔融炉工作参数,采用程序控制阶梯式升温,5段号加热及保温的方式对样品进行熔融,确定了最佳的样品制备工艺。实验表明,当最大目标功率12.75kW,每个段号的升温时间10s,整个熔融时间10min时,熔融制备出的样品中各待测元素化学成分在0~0.50mm不同深度方向具备良好的均匀性,相同熔融条件下的样品重复性良好。选用一定含量梯度的镍合金、镍铬合金、高合金钢光谱标准样品和化学定值的镍-铜-铁合金内控样品制作校准曲线,各待测元素线性相关系数均大于0.999,检出限在12.35~42.21μg/g之间,制备10次块状样品的分析结果的相对标准偏差在0.15%~1.9%(n=10)之间。实验方法应用于镍-铜-铁合金实际样品的测定,与标准方法测定结果具有较好的一致性,满足常规检测的需求。  相似文献   

8.
ICP-AES法测定不锈钢中多种元素   总被引:1,自引:0,他引:1       下载免费PDF全文
用ICP AES法同时测定了不锈钢中的铬、镍、钛、硅、锰、磷、铜、钼 ,替代了以化学法分别单独测定上述各元素。通过对ICP控制条件的选择 ,确定了各元素的测定谱线 ,进行了共存元素干扰试验 ,采用干扰系数法校正基体干扰和待测元素间的干扰 ,以 10 %混合酸作为低标 ,以同牌号标准样品作为高标 ,对上述元素进行了准确度及精密度试验 ,并与化学方法 ,原子吸收光谱法进行了对照。方法简便、快速 ,结果令人满意。  相似文献   

9.
芦飞 《冶金分析》2014,34(7):69-73
采用铣床制样,建立了X射线荧光光谱法(XRF)测定不锈钢中硅、锰、磷、硫、铬、镍、铜、钼、钒、钛、铌、钴元素的分析方法。通过对铣床和磨样机处理样品表面的分析,确定了铣床制备样品表面的最佳参数。对X射线荧光分析仪基本分析条件优化后,绘制了不锈钢样品中碳、硅、锰、磷、硫、铬、镍、铜、铝、钼、钒、钛、铌、钴、钨、钙、砷、锡、铅、锑和铁21个元素的回归曲线,对其中磷、硫、铬、镍、铜和钴元素进行干扰校正后,得到了较为理想的结果。比较了实验方法与火花源原子发射光谱法分析不锈钢中铬和镍元素的精密度,结果表明,实验方法的分析精密度较好。对精密度进行了验证,硅、锰、磷、硫、铬、镍、铜、钼、钒、钴元素的相对标准偏差(n=11)在0.08%~3.8%之间;对不锈钢标准样品进行分析,实验方法的分析结果与湿法或火花源原子发射光谱的测定值吻合较好。  相似文献   

10.
镉对高温合金的力学性能和组织会产生有害影响,因此需控制和准确测定高温合金中镉的含量。采用电感耦合等离子体质谱法(ICP-MS)测定高温合金中镉时,样品中含量较高的钼对镉的测定产生干扰。采用盐酸-硝酸-氢氟酸溶解样品,加入乙酸铅与钼反应生成钼酸铅沉淀以实现钼与待测元素的分离,用铑为内标元素克服基体效应和仪器信号漂移,选择111Cd为待测同位素,建立了ICP-MS测定高温合金中痕量镉的方法。采用扫描电子显微镜和微束分析能谱分别对沉淀静置前的悬浊液以及老化后得到的沉淀分析,优化了沉淀的条件。校准曲线的线性相关系数为0.999 8,检出限为0.070 μg/g,定量限为0.20 μg/g。选用中国科学院金属研究所自行冶炼的高温合金样品和高温合金标准物质为考察对象,采用实验方法对其中镉进行测定,测定结果分别与认定值或石墨炉原子吸收光谱法(GFAAS)测定值基本一致,实际样品测定结果的相对标准偏差(RSD,n=9)为0.46%~7.4%。  相似文献   

11.
采用11种与因瓦合金成分含量相接近的镍基合金标准样品绘制校准曲线,建立了基本不需要样品处理即可对因瓦合金中14种元素(C、Si、Mn、P、S、Ni、Cr、Mo、Cu、Al、Nb、Ti、Co、Fe)同时测定的辉光放电光谱法。确定辉光光谱仪检测因瓦合金的最佳条件:模块电压和相电压分别为8.22 V和3.82 V;功率为70 W;冲洗时间为80 s;积分时间为60 s。以各元素质量分数为横坐标,其对应的光谱强度为纵坐标绘制校准曲线,各元素校准曲线的相关系数均在0.99以上。采用实验方法对因瓦合金实际样品进行分析,结果显示:Cr、Ni、Mo、Ti、Fe的质量分数均大于0.3%,各元素测定值的相对标准偏差(RSD,n=11)均不大于1%;C、Si、Mn、P、S、Cu、Al、Nb、Co的质量分数均小于0.3%,各元素测定值的RSD(n=11)均小于5%。将实验方法应用于对因瓦合金样品中14种元素的测定,测得结果与滴定法测定Ni和Fe、高频燃烧红外吸收法测定C和S、电感耦合等离子体原子发射光谱法测定Si、Mn、P、Cr、Mo、Cu、Al、Nb、Ti和Co元素的结果基本一致。  相似文献   

12.
将激光剥蚀(LA)固体直接进样技术与电感耦合等离子体发射光谱法(ICP-OES)联用,并应用于中低合金钢成分分析。通过选取中低合金钢中各组分元素的分析线波长、扣除干扰背景、校正激光参数和选取基体元素Fe(274.9 nm)作为内标元素校正信号的漂移,建立了中低合金钢中Al、As、B、C、Co、Cr、Cu、Mn、Mo、Nb、Ni、P、S、Sb、Si、Sn、Ti、V、W、Zr 20种元素的LA-ICP-OES定量分析方法。研究结果表明:校准曲线的线性相关系数除硼、碳和硫外,其他元素都在0.9或0.99以上;各元素的检出限比较低,能满足中低合金钢的测定要求。方法用于测定中低合金钢标样中的上述20种元素,除个别元素在个别样品上的测定结果偏差稍大外,其他元素的测定值与认定值一致。  相似文献   

13.
周志伟 《冶金分析》2019,39(10):18-22
手持式X射线荧光光谱仪可用于金属加工、使用、回收等各领域材料牌号鉴别,因此成为现场材料管理的有效手段。但当对材料中Mn、Ti、V等合金成分不大于0.5%的牌号鉴别时,却得不到准确的牌号信息,给现场检测人员带来了极大的困扰。为控制现场鉴别误差,实验将手持式X射线荧光光谱仪鉴别条件优化为电压25kV,检测时间25s,样品检测面积20mm×20mm,表面粗糙度Ra6.3,5m内无强磁干扰的实验条件;对6组含Cr、Ni、Mo、Mn、Ti、V的合金样品进行检测和记录,发现Mn、Ti、V检测结果与标准规定值之间存在较大偏差,而Cr、Ni、Mo结果在标准范围内,数据稳定;因此实验选取Cr、Ni、Mo为指标元素,将指标元素检测结果作为牌号鉴别依据,确定牌号正确与否。对两节未知牌号的合金钢管,采用手持式XRF进行牌号鉴别,同时与电感耦合等离子体原子发射光谱(ICP-AES)的Cr、Ni、Mo测定值进行对照,现场检测结果与ICP-AES的结果吻合较好,完全能满足合金牌号鉴别的需要。  相似文献   

14.
提出了一种用电感耦合等离子体原子发射光谱(ICP-AES)法直接测定Cr20Ni80镍铬合金溅射靶材中主量元素Cr和次量元素Si、Mn、P、Cu、Fe、Ti、Ce的分析方法。在低温加热下用硝酸-盐酸混合酸(V硝酸∶V盐酸∶V= 65∶200∶735)溶解试样,选择Si 251.612 nm、Mn 257.611 nm、P 178.287 nm、Cr 284.984 nm、Cu 324.754 nm、Fe 259.941 nm 、Ti 334.941 nm 和Ce 418.660 nm的光谱线作为分析线,大量基体元素如镍、铬、钇产生的基体效应影响可以通过基体匹配方法消除,谱线的重叠干扰和非光谱干扰不明显。测定主量元素Cr时,由于检测信号的短时漂移和波动对测定有影响,可以通过加入内标元素Y克服。对4种Cr20Ni80镍铬合金溅射靶材试样中上述8种元素进行测定,结果的相对标准偏差均小于2%,对Cr20Ni80镍铬合金标样中Si、Mn、P、Cr、Cu、Fe、Ti进行测定,测定值与认定值相符。  相似文献   

15.
采用盐酸和硝酸并利用微波消解法完全消解难溶高碳合金钢,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定其中的主要合金元素含量。试验对消解方法、消解试剂的选择及用量、水用量对高硅样品消解的影响、微波消解程序等进行了探讨。最终确立了最佳消解条件为:称取0.2g样品,依次加入10.0mL水、5.0mL盐酸、5.0mL硝酸,在目标温度达到180℃条件下进行微波消解处理。而对于硅质量分数在1.0%以上的高硅难溶高碳合金钢样品,应适当增加水用量。按照实验方法处理多个难溶高碳合金钢样品,并采用ICP-AES测定其中的主要合金元素Si、Mn、Ni、Cr、Mo、V,结果的相对标准偏差(RSD,n=8)为0.23%~4.7%;按照实验方法处理4个难溶高碳合金钢标准样品,并使用ICP-AES测定Si、Mn、Ni、Cr、Mo、V,测定结果与认定值相吻合。  相似文献   

16.
采用冷等离子体模式, 以57Fe为内标, 建立了单点激光剥蚀电感耦合等离子体质谱法(LA-ICP-MS)测定钢铁材料中各元素的方法。氧化铝砂纸进行样品表面处理会引入玷污;样品表面粗糙度对结果影响不大;除钛外, 样品直径对结果影响不明显;砷、锡的分馏因子(FI)分别为0.85和0.83, 有分馏效应, 其他元素的FI在0.93~1.05之间, 没有分馏效应;采用不同系列标准物质进行曲线拟合, 除硅、磷、硫外, 其他元素的相关系数都大于0.95, 基体效应不明显;方法能实现用34S测定硫, 但不能测定碳。建立了测定低合金钢及其钢丝中铝、硅、磷、硫、钛、钒、铬、锰、钴、镍、铜、砷、钼和锡等元素的方法, 标准物质的测定值与认定值基本吻合;精密度考察发现, 各元素的RSD(n=5)为0.7%~8.7%(钛的RSD 达17%)。方法还适用于其他钢铁材料中钒、铬、锰、钴、镍、钼和锡等元素的测定, 有实际应用价值。  相似文献   

17.
辉光放电质谱法测定中低合金钢中18种元素   总被引:1,自引:1,他引:0       下载免费PDF全文
研究用辉光放电质谱法(GDMS)同时直接测定中低合金钢中的B,C,Al,P,S,Ti,V,Cr,Mn,Co,Ni,Cu,As,Zr,Nb,Mo,Sn,W共18种元素。对仪器进行质量校正,以确定正确的质谱峰位置。通过对分析元素质谱干扰情况的考察,选择合适的同位素用于分析。根据分析元素相对强度和相对强度的稳定性,对辉光放电参数如电流、电压、预溅射时间进行了优化。采用相对灵敏度因子(RSF)进行质谱定量分析。方法用于测定中低合金钢标准样品,分析结果与标样的认定值相吻合,大部分元素的相对标准偏差(RSD)小于5%  相似文献   

18.
选取具有代表性的红土镍矿样品为校准样品,建立了便携式能量色散X射线荧光光谱仪直接测定粉末红土镍矿样品中Fe、Ni、Cr、Mn、Ti、Zn、Ca含量的分析方法。实验采用滴定法对校准样品中主量元素铁,ICP-AES法对其他元素进行定值,解决了红土镍矿标样短缺的问题。对校准样品的前处理方法及测定条件等进行了探讨,并通过研磨使校准样品与测试样品达到相同颗粒度以降低颗粒效应的干扰,同时利用仪器自带的NDTr软件,以基本参数法(FP法)自动校正元素间相互干扰效应。精密度试验结果表明,各组分相对标准偏差(n=7)在0.16%~8.3%之间。方法用于红土镍矿实际样品分析,测定结果与湿法分析结果吻合,能够满足现场大批量样品主次元素同时快速分析的需要。  相似文献   

19.
周伟  贾云海 《冶金分析》2007,27(10):1-1
提出了电感耦合等离子体原子发射光谱法测定锌及锌合金中铝、铋、钙、镉、钴、铬、铜、铁、镁、锰、钼、镍、铅、锡、钛和钒16种元素的分析方法,对仪器各项参数进行优化,采用基体匹配办法克服基体干扰,通过选择合适的分析线和背景校正消除共存元素间干扰。方法应用于实际样品分析,测定结果与认定值或其他方法的测定值相符。  相似文献   

20.
采用硝酸、高氯酸和过氧化氢溶解样品,在0.010mol/LEDTA介质中,用电感耦合等离子体原子发射光谱法测定样品溶液中Ni,Cu,Mn,Mo,Co,Cr,Si,P的含量。为满足测定对象的要求,由8种元素的混合标准溶液配制了系列标准溶液。研究了铁基体和共存元素对分析元素光谱的影响,选择合适的测定波长,测定了分析结果的精密度、方法的检出限和回收率。结果表明,基体铁对测定没有明显干扰;在选定的波长下测定,元素间也没有干扰。分析方法有很低的检出限,样品分析结果的相对标准偏差小于4%,加标回收率为97.8%~10  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号