共查询到19条相似文献,搜索用时 78 毫秒
1.
目前模糊C均值聚类算法广泛应用于入侵检测算法中,但是存在聚类数目难以确定,目标函数的局部极小点使得算法容易陷入局部最优的现象,影响入侵检测的准确率。鉴于此,文中提出一种基于粒子群算法的模糊聚类算法,引入PSO全局搜索能力和粒子翻转变异操作,避免传统C均值聚类算法对孤立点敏感,容易陷入局部最优,过早收敛的问题。最后通过实验结果表明,新算法检测率明显优于C均值聚类算法,能很好地应用于目前入侵检测系统之中。 相似文献
2.
在模糊C-均值(FCM)聚类算法基础上,提出一种将粒子群优化算法与FCM聚类算法相结合产生基于粒子群的C均值算法(PSO-FCM均值算法)。用KDD cup99数据集进行比较FCM算法和PSO-FCM算法检测性能。试验结果表明,PSO-FCM算法能够避免FCM算法固有的缺点,检测率提高和漏报率、误报率下降,并且有较高的检测性能。 相似文献
3.
4.
基于粒子群优化的模糊C-均值聚类改进算法 总被引:3,自引:3,他引:3
针对模糊C-均值聚类算法(FCM)存在易陷入局部优化的问题,将粒子群优化算法(PSO)和模糊C-均值聚类算法FCM相结合,提出了一种新的模糊聚类算法PSO-FCM.该算法使用PSO算法来代替FCM的迭代过程以实现模糊聚类,具有了很强的全局搜索能力,从而不用再为得到好的聚类效果而反复选择初值.仿真实验结果表明,提出的模糊聚类算法提高了FCM的搜索能力,具有更好的稳定性和健壮性,优化能力增强,提高了聚类的效率和效果. 相似文献
5.
6.
7.
王杨 《计算机与数字工程》2014,42(9):1610-1612
利用粒子群优化(PSO)算法全局寻优的特点,很大程度上避免了模糊C-均值聚类(FCM)算法对初值敏感、易陷入局部收敛的缺陷.利用收敛速度快的K均值聚类法得到的聚类中心作为PSO算法初始聚类中心的参考,提出一种新的模糊C-均值聚类算法Improved PSO FCM.实验结果表明,论文算法提高了FCM的搜索能力,聚类更为准确,效率更高. 相似文献
8.
一种采用粒子群优化的聚类算法 总被引:1,自引:0,他引:1
针对传统的聚类算法存在对初始化值敏感和容易陷入局部极值等缺点,提出一种确定聚类中心数目和位置的方法。用每一个粒子表示一组聚类中心,采用云理论改造粒子群算法,从而提高粒子群算法的性能,以便搜索到更合理的聚类中心完成聚类划分。实验结果表明该算法很好克服了这两个缺点,获得了稳定性好和更紧凑的聚类效果。 相似文献
9.
针对传统的模糊C-均值聚类算法对初始聚类中心较敏感、易陷入局部最优的缺点,将粒子群优化算法和FCM算法相结合,提出一种改进的模糊聚类算法。该算法利用粒子群算法的全局搜索能力代替FCM算法寻找初始聚类中心,使其跳出局部最优,实现模糊聚类。主要从反映数据集分类的类内紧致性程度和类间分离性程度的角度考虑,重新设计适应度函数。实验结果表明,提出的算法在聚类正确率和有效性指标上有更好的效果。 相似文献
10.
基于混沌的聚类粒子群优化算法 总被引:1,自引:0,他引:1
针对函数优化问题,提出了一种基于混沌的聚类粒子群优化算法。该算法利用混沌序列产生粒子的位置和速度,并与粒子群优化算法产生的粒子位置进行比较,选择好的粒子位置。同时通过谱系聚类方法进行聚类,并且给出新的速度更新公式。最后将算法应用到5个典型的函数优化问题中,并与其它改进的粒子群算法进行比较分析。数值结果表明,该算法提高了全局搜索能力、收敛速度和解的精度。 相似文献
11.
研究无线传感器网络路由优化问题,由于无线传感器节点的能量受到限制,通信过程能量损耗,影响网络的性能。传统粒子群算法难以获得最优网络路由方案。为延长网络生存时间,结合粒子群的快速性和混沌的遍历性优点,提出了一种混沌粒子群(CPSO)的无线网络路由优化方法。通过粒子群算法的自组织、动态寻优能力,并通过混沌机制对粒子群进行混沌扰动,增加多样性,加快最优路由优化速度,使网络最优路由和能量消耗间尽量平衡。仿真结果表明,相对于传统优化算法,CPSO提高了无线传感器网络路由优化速度,减少网络能量消耗,有效延长了网络生存时间,为提高整个网络通信效率提供了参考。 相似文献
12.
当前对网络奥情的研究大多集中于突发事件的传播规律及预警分析,而忽视了用户在奥情传播中的主体位
置。针对这一问题,引入“观念空间”的概念,使用粒子群算法对突发事件传播中用户的观念聚类过程进行模拟和仿
真。根据用户观念的聚类结果分析事件的动态演化模型,识别热点事件。通过改变速度参数控制用户聚类收敛速度,
进而协调事件的演化过程,同时实现对网络热点事件的识别和舆情预警。最后分别对基于基本PSO和基于物种遗传
策略的PSOCSPSO)算法的用户聚类行为进行了仿真,实验结果表明,SPS<)算法能够有效地模拟奥情网络中用户的
聚类行为,同时发现多个用户聚类中心,有利于制定自适应的奥情预警应对策略。 相似文献
13.
基于改进粒子群算法的聚类算法 总被引:3,自引:0,他引:3
K-均值算法是一种传统的聚类分析方法,具有思想与算法简单的特点,因此成为聚类分析的常用方法之一.但K-均值算法的分类结果过分依赖于初始聚类中心的选择,对于某些初始值,该算法有可能收敛于一般次优解.在分析K-均值算法和粒子群算法的基础上,提出了一种基于改进的粒子群算法的聚类算法.该算法将局部搜索能力强的K均值算法和全局搜索能力强的粒子群算法结合,提高了K均值算法的局部搜索能力、加快了收敛速度,有效地阻止了早熟现象的发生.实验表明该聚类算法有更好的收敛效果. 相似文献
14.
聚类是数据挖掘中重要的数据处理方法.文中提出改进的离散多目标量子微粒群聚类算法.针对类中心数目未知的情况,引入整数编码策略,基于Canopy策略预测类中心的数目,设计有效的微粒群初始化策略.通过引入与、并和差异算子,定义改进的离散量子微粒更新公式.将文中算法应用于7组真实数据集,并对比2种典型单目标聚类算法和3种多目标聚类算法,验证文中算法性能. 相似文献
15.
提出一种基于模糊C-均值算法和粒子群优化算法的混合聚类算法,该算法利用粒子群优化算法全局寻优的特点,有效地克服了模糊C-均值算法对初始值敏感、易陷入局部最优的缺点.实验表明,该算法具备良好的聚类效果. 相似文献
16.
聚类可以看成是寻找K个最佳聚类中心的过程。文中把一组聚类中心视为一个粒子(P),把各个数据到各自聚类中心的欧式距离之和看成优化函数(f(P)),使用带混沌搜索的粒子群聚类算法(C-PSO)算法寻找最优函数值,从而找到最佳聚类中心。该算法改进了粒子速度的初始化,把混沌搜索嵌入到粒子群的搜索过程中,提高了粒子群的搜索能力。实验结果表明,该算法的聚类效果明显好于K-means和PSO聚类。 相似文献
17.
18.
带混沌搜索的粒子群聚类算法 总被引:2,自引:0,他引:2
聚类可以看成是寻找K个最佳聚类中心的过程.文中把一组聚类中心视为一个粒子(P),把各个数据到各自聚类中心的欧式距离之和看成优化函数(f(P)),使用带混沌搜索的粒子群聚类算法(C-PSO)算法寻找最优函数值,从而找到最佳聚类中心.该算法改进了粒子速度的初始化,把混沌搜索嵌入到粒子群的搜索过程中,提高了粒子群的搜索能力.实验结果表明,该算法的聚类效果明显好于K-means和PSO聚类. 相似文献
19.
提出一种新的图象分类算法椈谖⒘H旱腒均值聚类图象分类算法.将此算法和K均值聚类算法以及微粒群图像分类算法分别应用于MRI人脑图象的分类,并进行了比较.实验结果表明:基于微粒群的K均值聚类图象分类算法具有较好的全局收敛性,不仅能有效克服K均值算法易陷入局部极小值的缺点,且全局收敛性能优于微粒群图像分类算法. 相似文献