首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In grazing systems dung is an important source of nutrients which can increase soil fertility and contribute to nutrient cycling through increased pasture production. Changes in soil chemical and biological properties and pasture production were measured below and around dung pads created in the field. Almost 65% of the total dung P remained after 45 days and about two-thirds of the pad fresh weight had disappeared in that time, indicating that physical degradation is the mechanism of incorporation of dung P. All the pads bar one were completely degraded by 112 days. At this time, soil pH and EC increased under dung pads as did Olsen extractable inorganic phosphorus (Pi) and total phosphorus (Pt), with these changes observed at 0–5 and 5–10 cm depths. Bicarbonate extractable soil organic phosphorus (Po) was not affected by dung and the observed differences in soil Po:Pi ratios were largely influenced by the substantial addition of inorganic P from dung. Dung increased the P buffering capacity of the 0–5 cm soil samples collected at the end of the experiment, potentially contributing to the increased extractable soil P measured under the pads. Dung also changed soil properties in 0–10 cm samples with increases in soil pH, EC, Colwell P and Colwell K recorded even long after the dung had completely disappeared. Microbial biomass carbon increased under dung pads in the 0–10 cm soil samples in the first 45 days after pads were applied. Total herbage production and ryegrass biomass increased significantly under and around the pads by 112 days after dung was applied. The botanical composition changed significantly with increased ryegrass contents observed, but only under the dung pads. This experiment demonstrated that increases in pasture around dung pads in the field are not solely due to animal rejection.  相似文献   

2.
The field experiments were conducted at the Indian Agricultural Research Institute, New Delhi, India for 3 years from 2001–2002 to 2003–2004 to study the relative efficiency of diammonium phosphate (DAP) and Mussoorie rock phosphate along with phosphorus solubilizing bacteria inoculation (MRP + PSB) at different rates of application on productivity and phosphorus balance in a rice-rapeseed-mungbean cropping system. Phosphorus application significantly increased the productivity of rice-rapeseed-mungbean cropping system and resulted in an increase in 0.5 M NaHCO3 extractable P content in soil. The relative agronomic effectiveness (RAE) of MRP + PSB in relation to DAP as judged by the total productivity was 53–65% in the first cycle but reached 69–106% in the third cycle of the cropping system. The P balance (application—crop removal) was generally more positive for MRP + PSB than DAP and the highest P balance was recorded with an application of 52.5 kg P ha−1 as MRP + PSB, resulted in highest 0.5 M NaHCO3 extractable P content in soil. The present study, thus, shows that MRP + PSB could be usefully employed as an alternative to DAP in long term in the rice–rapeseed–mungbean cropping system.  相似文献   

3.
A field experiment was conducted in a 7-year old alfalfa stand to compare the influence of time and method of terminating alfalfa stands on crop yield, seed quality, N uptake and recovery of applied N for wheat (Triticum aestivum L.) and canola (Brassica napus L.), soil properties (ammonium-N, nitrate-N, bulk density, total and light fraction organic C and N), and N2O emissions on a Gray Luvisol (Typic Cryoboralf) loam near Star City, Saskatchewan, Canada. The treatments were a 3 × 3 × 4 factorial combination of three termination methods [herbicide (H), tillage (T), and herbicide + tillage (HT)], three termination times (after cut 1 and cut 2 in 2003, and in spring 2004) and four rates of N (0, 40, 80 and 120 kg N ha−1) applied at seeding to wheat-canola rotation from 2004 to 2007. In the termination year, soil nitrate-N was considerably higher in T or HT treatments than in the H treatment and decreased with delay in termination. In the first crop year, seed and straw yields of wheat grown on T and HT treatments were significantly greater than H alone (by 1,055–1,071 kg seed ha−1 and by 869–929 kg straw ha−1), due to greater content of soil available N in T treatments. Yields decreased with delay in termination time. In general, yield and N uptake in seed and straw, and protein concentration tended to increase with increasing N rate. A greater yield increase occurred on the H compared to T and HT treatments from the first increments of N applied. Nitrous oxide emissions were generally low and there were no treatment differences evident when cumulative 4-year N2O-N losses were compared. Appropriate N fertilization was able to compensate for yield reductions due to delayed termination timing, but could not do so entirely for yield reductions on the H compared to T or HT termination method. The amounts of TOC, TON, LFOC and LFON after four growing seasons were usually higher or tended to be higher under H treatment than under T treatment in the 0–5 cm soil layer, but the opposite was true in the 5–10 cm or 10–15 cm soil layers.  相似文献   

4.
Many soils in the Parkland region of the Canadian Prairie contain insufficient amounts of plant-available S and N for high crop yields. Two field experiments (Experiment 1 1980–2005 and Experiment 2 1996–2005) were conducted on a Dark Gray Chernozem (Boralfic Boroll) loam soil at Canwood in north-central Saskatchewan, Canada, to determine the effects of long-term N, S and/or K fertilization to grass on mean forage dry matter yield (DMY), nutrient (N, S and K) concentration and nutrient uptake (averaged over years), and root mass, soil pH, total organic C (TOC) and N (TN), light fraction organic matter (LFOM), C (LFC) and N (LFN), mineralizable C and N, and extractable ammonium-N and nitrate-N in May 2006 (after 26 or 10 growing seasons). Experiment 2 additionally compared the effects of ‘hay-on’ (cut hay not removed) versus ‘hay-off’ (hay removed) on the plant and soil parameters. Experiment 1 had annual treatments of no fertilizer, N, NS and NSK fertilizers from 1980 to 2005, and Experiment 2 received no fertilizer, N, S and NS fertilizers from 1996 to 2005 under ‘hay-on’ and ‘hay-off’ conditions. While DMY, nutrient uptake and root mass were little affected by application of N or S alone compared with the unfertilized treatment, they were substantially increased by application of both N and S together. Co-application of N, S and K fertilizers increased DMY, nutrient uptake and root mass compared with NS application in Experiment 1. Nitrogen concentration in forage was highest in the N only treatment, followed by NS, and then nil, S or NSK treatments. The concentration of K in forage decreased in the order of treatments: NSK > nil or S treatment > N or NS; and of S: NS or S treatment > NSK treatment > nil treatment > N only treatment. Nutrient uptake was influenced more by forage DMY than nutrient concentration. In Experiment 2, DMY and N and K uptakes were greater under ‘hay-on’ than ‘hay-off’ conditions. Soil pH to 15-cm depth was decreased by NSK fertilization. The amounts of TOC, TN, LFOM, LFC, LFN, and mineralizable C and N in the 0–10 cm soil were increased considerably by the co-application of N and S fertilizers. The increase in soil C correlated well with the increase in DMY or root mass resulting from balanced fertilization. Not removing hay resulted in substantially increased LFOM, LFC and LFN contents in soil. The accumulation and downward movement of nitrate-N in the soil profile was decreased with NS application compared with N alone. In conclusion, application of N and S fertilizers together to soil deficient in both N and S produced high forage yield, nutrient uptake and root mass while also reducing soil pH, increased C and N sequestration in soil, and minimized accumulation and downward movement of nitrate-N in the soil profile.  相似文献   

5.
An understanding of the dynamics of soil organic carbon (SOC) as affected by farming practices is imperative for maintaining soil productivity and also for restraining global warming by CO2 evolution. Results of a long-term (30 year) experiment in the Indian Himalayas under rainfed soybean (Glycine max L.)—wheat (Triticum aestivum L.) rotation was analyzed to determine the influence of mineral fertilizer and farmyard manure (FYM) application at 10 Mg ha−1 on SOC and total soil nitrogen (TSN) stocks and distribution within different aggregate size fractions. Fertilizers (NP, NK and NPK) and FYM in combination with N or NPK were applied before the soybean crop every year and no nutrient was applied before the wheat crop. Results showed that addition of FYM with N or NPK fertilizers increased SOC and TSN contents. The overall gain in SOC in the 0- to 45-cm soil depth interval in the plots under NPK + FYM treatment over NPK was 17.18 Mg C ha−1 in 30 year. The rate of conversion of input C to SOC was about 19% of each additional Mg C input per hectare. SOC content in large size aggregates was greater than in smaller size aggregates, and declined with decreased aggregate size. Thus, long-term soybean–wheat rotation in a sandy loam soil of the Indian Himalayas sequestered carbon and nitrogen. Soil organic C and TSN sequestration in the 0.25- to 0.1-mm size fraction is an ideal indicator of long-term C and N sequestration, since this fraction retained maximum SOC/TSN stock.  相似文献   

6.
High profile nitrate-nitrogen (N) accumulation has caused a series of problems, including low N use efficiency and environmental contamination in intensive agricultural systems. The key objective of this study was to evaluate summer maize (Zea mays L.) yield and N uptake response to soil nitrate-N accumulation, and determine soil nitrate-N levels to meet N demand of high yield maize production in the North China Plain (NCP). A total of 1,883 farmers’ fields were investigated and data from 458 no-N plots were analyzed in eight key maize production regions of the NCP from 2000 to 2005. High nitrate-N accumulation (≥172 kg N ha−1) was observed in the top (0–90 cm) and deep (90–180 cm) soil layer with farmers’ N practice during maize growing season. Across all 458 no-N plots, maize grain yield and N uptake response to initial soil nitrate-N content could be simulated by a linear plus plateau model, and calculated minimal pre-planting soil nitrate-N content for maximum grain yield and N uptake was 180 and 186 kg N ha−1, respectively, under no-N application conditions. Economically optimum N rate (EONR) decreased linearly with increasing pre-planting soil nitrate-N content (r 2 = 0.894), and 1 kg soil nitrate-N ha−1 was equivalent to 1.23 kg fertilizer-N ha−1 for maize production. Residual soil nitrate-N content after maize harvest increased exponentially with increasing N fertilizer rate (P < 0.001), and average residual soil nitrate-N content at the EONR was 87 kg N ha−1 with a range from 66 to 118 kg N ha−1. We conclude that soil nitrate-N content in the top 90 cm of the soil profile should be maintained within the range of 87–180 kg N ha−1 for high yield maize production. The upper limit of these levels would be reduce if N fertilizer was applied during maize growing season.  相似文献   

7.
The expansion of intensive livestock operations in western Canada has increased concerns about overloading of nutrients in manured lands. The magnitude of nutrient accumulation and its distribution in the soil profile varies with soil-climatic conditions. The objective of this study was to determine loading and distribution of manure-derived nitrogen (N) in the soil profile as influenced by repeated manure applications. Four field experiments were conducted at three sites (Dixon, Melfort and Plenty) in Saskatchewan under longer-term manure management. The four field experiments provide contrasts in soil type, climatic conditions, manure type, application and cropping history to enable the effect of these factors to be evaluated. Liquid hog manure (LHM—Experiment 1) and solid cattle manure (SCM—Experiment 2) treatments were applied annually over 8 years at Dixon (Black Chernozemic loam soil—Udic Boroll in sub-humid climate), while only LHM was applied at Plenty (Dark Brown Chernozemic heavy clay soil—Typic Boroll in semi-arid climate) over 6 years (Experiment 3), and at Melfort (Dark Gray Luvisol silty clay loam soil—Mollic Cryoboralf in humid climate) over 5 years (Experiment 4). Soil samples were collected in the spring and autumn of 2003 and 2004, and were analyzed for organic N, ammonium-N (NH4+-N) and nitrate-N (NO3-N) concentrations. Plant samples were collected to determine the impact of manure application rate on plant N uptake and crop N removal. The annual application of LHM (37,000 L ha−1 yr−1) and SCM (7.6 Mg ha−1 yr−1) at agronomic rates at Dixon (added N balances crop demand for that year), or larger rates of LHM (111,000 L ha−1) applied once every 3 years (Melfort) did not significantly elevate NO3-N in soil compared to the unfertilized control. Lower crop removal and reduced leaching of NO3-N due to drier conditions as occurred at the Plenty site contributed to greater accumulation of nitrate in the top 60 cm at equivalent rates compared to the other two sites. At large manure rates, excess N from the balance estimates could not be accounted for in soil organic N and was assumed to be lost from the soil-plant system. At the Dixon LHM site, deep leaching of NO3-N was observed at the excessive rate (148,000 L ha−1 yr−1) up to the 150 cm depth, compared to the control. At Dixon, the large annual application rate of SCM (30.4 Mg ha−1 yr−1) did not significantly increase NO3-N in the 0–60 cm soil compared to the control, which was attributed to lower mineralization of organic N from the SCM. Over the short and medium term, LHM application at large rates every year poses a greater risk for loading and deep migration of NO3-N in soil than large rates of SCM. Larger single applications made once every 3 years were not associated with accumulation or deep leaching. To prevent loading, rates of applied manure nitrogen should be reduced when crop N removal potential is diminished by high frequency of drought.  相似文献   

8.
Long-term use of soil, crop residue and fertilizer management practices may affect some soil properties, but the magnitude of change depends on soil type and climatic conditions. Two field experiments with barley, wheat, or canola in a rotation on Gray Luvisol (Typic Cryoboralf) loam at Breton and Black Chernozem (Albic Argicryoll) loam at Ellerslie, Alberta, Canada, were conducted to determine the effects of 19 or 27 years (from 1980 to 1998 or 2006 growing seasons) of tillage (zero tillage [ZT] and conventional tillage [CT]), straw management (straw removed [SRem] and straw retained [SRet]) and N fertilizer rate (0, 50 and 100 kg N ha−1 in SRet, and 0 kg N ha−1 in SRem plots) on pH, extractable P, ammonium-N and nitrate–N in the 0–7.5, 7.5–15, 15–30 and 30–40 cm or 0–15, 15–30, 30–60, 60–90 and 90–120 cm soil layers. The effects of tillage, crop residue management and N fertilization on these chemical properties were usually similar for both contrasting soil types. There was no effect of tillage and residue management on soil pH, but application of N fertilizer reduced pH significantly (by up to 0.5 units) in the top 15 cm soil layers. Extractable P in the 0–15 cm soil layer was higher or tended to be higher under ZT than CT, or with SRet than SRem in many cases, but it decreased significantly with N application (by 18.5 kg P ha−1 in Gray Luvisol soil and 20.5 kg P ha−1 in Black Chernozem soil in 2007). Residual nitrate–N (though quite low in the Gray Luvisol soil in 1998) increased with application of N (by 17.8 kg N ha−1 in the 0–120 cm layer in Gray Luvisol soil and 23.8 kg N ha−1 in 0–90 cm layer in Black Chernozem soil in 2007) and also indicated some downward movement in the soil profile up to 90 cm depth. There was generally no effect of any treatment on ammonium-N in soil. In conclusion, elimination of tillage and retention of straw increased but N fertilization decreased extractable P in the surface soil. Application of N fertilizer reduced pH in the surface soil, and showed accumulation and downward leaching of nitrate–N in the soil profile.  相似文献   

9.
Phosphorus distribution and stability in soils of the Everglades Agricultural Area (EAA) of south Florida is important because of changing land uses. We investigated the effects of land use on P distribution in the soil profile and between chemical fractions for a histosol of the Florida Everglades. Labile, Fe–Al bound, Ca-bound, humic–fulvic acid, and residual P pools in 0–15, 15–30, and 30–45 cm depths were determined for drained soils planted to sugarcane (Saccharum sp.) for 50 yr, pasture for 100 yr, turfgrass for 60 yr, and forest for 20 yr. The P concentrations of all chemical fractions decreased with depth in the profile, indicating accumulation in surface soil resulting from oxidation and fertilization. Trends in P distribution between chemical fractions were similar between land uses. Labile P comprised less than 1% of total P. Fe–Al bound P averaged 2.9% of the total P for turfgrass and forest, but 11.4 and 9.6% for sugarcane and pasture. Increasing soil disturbance and long-term fertilization increased P allocation to inorganic fractions, as Ca-bound P contained 49% of total P for sugarcane but 28% for other land uses. Total P stocks in the soil profile (0–45 cm) averaged 1,323, 2,005, 2,294, and 2,317 kg P ha−1 for pasture, sugarcane, turfgrass, and forest, respectively. Under current land uses P in organic fractions represents an unstable pool since the soil is prone to oxidation under drained conditions. In contrast, P sequestered in inorganic fractions is more stable under current land uses, thus sugarcane cultivation and incorporation of bedrock CaCO3 into surface soil by tillage will enhance long-term P sequestration.  相似文献   

10.
The effects of conservation tillage, crop residue and cropping systems on the changes in soil organic matter (SOM) and overall maize–legume production were investigated in western Kenya. The experiment was a split-split plot design with three replicates with crop residue management as main plots, cropping systems as sub-plots and nutrient levels as sub-sub plots. Nitrogen was applied in each treatment at two rates (0 and 60 kg N ha−1). Phosphorus was applied at 60 kg P/ha in all plots except two intercropped plots. Inorganic fertilizer (N and P) showed significant effects on yields with plots receiving 60 kg P ha−1 + 60 kg N ha−1 giving higher yields of 5.23 t ha−1 compared to control plots whose yields were as low as 1.8 t ha−1 during the third season. Crop residues had an additive effect on crop production, soil organic carbon and soil total nitrogen. Crop rotation gave higher yields hence an attractive option to farmers. Long-term studies are needed to show the effects of crop residue, cropping systems and nutrient input on sustainability of SOM and crop productivity.  相似文献   

11.
Reduced tillage (RT) agriculture is an effective measure to reduce soil loss from soils susceptible to erosion in the short-term and is claimed to increase the soil organic carbon (SOC) stock. The change in distribution and total SOC stock in the 0–60 cm layer, the stratification of microbial biomass carbon (MB-C) content in the 0–40 cm layer and the carbon (C) mineralization in the upper 0–5 cm layer in silt loam soils in Western Europe with different periods of RT agriculture were evaluated. Ten fields at seven locations, representing the important RT types and maintained for a different number of years, and eight fields under conventional tillage (CT) agriculture with similar soil type and crop rotation were selected. RT agriculture resulted in a higher stratification of SOC in the soil profile than CT agriculture. However, the total SOC stock in the 0–60 cm layer was not changed, even after 20 of years RT agriculture. The MB-C was significantly higher in the 0–10 cm layer under RT agriculture, even after only 5 years, compared to CT agriculture. The higher SOC and MB-C content in the upper 0–5 cm layer of RT fields resulted in a higher C mineralization rate in undisturbed soil in the laboratory. Simulating ploughing by disturbing the soil resulted in inconsistent changes (both lower and higher) of C mineralization rates. A crop rotation with root crops, with heavy soil disturbance every 2 or 3 years at harvest, possibly limited the anticipated positive effect of RT agriculture in our research.  相似文献   

12.
Understanding mulching influences on nitrogen (N) activities in soil is important for developing N management strategies in dryland. A 3 year field experiment was conducted in the Loess Plateau of China to investigate the effects of mulching, N fertilizer application rate and plant density on winter wheat yield, N uptake by wheat and residual soil nitrate in a winter wheat-fallow system. The split plot design included four mulching methods (CK, no mulch; SM, straw mulch; FM, plastic film mulch; CM, combined mulch with plastic film and straw) as main plot treatments. Three N fertilizer rates (N0, 0 kg N ha−1; N120, 120 kg N ha−1; N240, 240 kg N ha−1) were sub-plot treatments and two wheat sowing densities (LD, low density, seeding rate = 180 kg ha−1; HD, high density, seeding rate = 225 kg ha−1) were sub-subplot treatments. The results showed that wheat yield, N uptake, and N use efficiency (NUE) were higher for FM and CM compared to CK. However, soil nitrate-N contents in the 0–200 cm soil profile were also higher for FM and CM compared to CK after the 3 year experiment. Wheat grain yields were higher for SM compared to CK only when high levels of nitrogen or high planting density were applied. Mulching did not have a significant effect on wheat yield, nitrogen uptake and NUE when soil water content at planting was much high. Wheat yield, N uptake, and residual nitrate in 0–200 cm were significantly higher for N240 compared to N120 and N0. Wheat yield and N uptake were also significantly higher for HD compared to LD. When 0 or 120 kg N ha−1 was applied, HD had more residual nitrate than LD while the reverse was true when 240 kg N ha−1 was applied. After 3 years, residual nitrate-N in 0–200 cm soil averaged 170 kg ha−1, which was equivalent to ~40% of the total N uptake by wheat in the three growing seasons.  相似文献   

13.
In the aerobic rice system, adapted rice cultivars are grown in non-flooded moist soil. Aerobic rice may be suitable for double cropping with winter wheat in the Huai River Basin, northern China plain. Field experiments in 2005 and 2006 were conducted to study the response of aerobic rice and winter wheat to sequential rates of nitrogen (N), phosphorus (P) and potassium (K) in aerobic rice—winter wheat (AR-WW) and winter wheat—aerobic rice (WW-AR) cropping sequences. Fertilizer treatments consisted of a complete NPK dose, a PK dose (N omission), a NK dose (P omission), a NP dose (K omission), and a control with no fertilizer input. Grain yields of crops with a complete NPK dose ranged from 3.7 to 3.8 t ha−1 and from 6.6 to 7.1 for aerobic rice’ and ‘winter wheat’, respectively. N omissions caused yield reductions ranging from 0.5 to 0.8 t ha−1 and from 1.6 to 4.3 t ha−1 for rice and wheat, respectively. A single omission of P or K did not reduce rice and wheat yields, but a cumulative omission of P or K in a double cropping system significantly reduced wheat yields by 1.2–1.6 t ha−1. N, P and K uptake of both crops were significantly influenced by fertilizer applications and indigenous soil nutrient supply. Nutrient omissions in a preceding crop reduced plant N and K contents and uptake additionally to direct effects of the fertilizer treatments in wheat, but not in rice. Apparent nutrient recoveries (ANR) differed strongly between ‘aerobic rice’ and ‘winter wheat’; in rice: for N it ranged from 0.30 to 0.32, for P from 0.01 to 0.06, and for K from 0.03 to 0.19 and in wheat: for N from 0.49 to 0.71, for P from 0.09 to 0.15, and for K from 0.26 to 0.31. Further improvements of crop productivity as well as nutrient-use efficiencies, should be brought about by developing cropping systems, by an appropriate choice of adapted cultivars, by a site- and time-specific fertilizer management and by eliminating other yield-limiting factors. It is concluded that nutrient recommendations should not be based on the yield response of single crops only, but also on the after-effects on nutrient availability for succeeding crops. A whole cropping system approach is needed.  相似文献   

14.
Soil, crop and fertilizer management practices may affect the amount and quality of organic C and N in soil. A long-term field experiment (growing barley, wheat, or canola) was conducted on a Black Chernozem (Albic Argicryoll) loam at Ellerslie, Alberta, Canada, to determine the influence of 19 (1980 to 1998) or 27 years (1980 to 2006) of tillage (zero tillage [ZT] and conventional tillage [CT]), straw management (straw removed [SRem]and straw retained [SRet]) and N fertilizer rate (0, 50 and 100 kg N ha−1 in SRet and 0 kg N ha−1 in SRem plots) on total organic C (TOC) and N (TON), and light fraction organic C (LFOC) and N (LFON) in the 0–7.5 and 7.5–15 cm or 0–5, 5–10 and 10–15 cm soil layers. The mass of TOC and TON in soil was usually higher in SRet than in SRem treatment (by 3.44 Mg C ha−1 for TOC and 0.248 Mg N ha−1 for TON after 27 years), but there was little effect of tillage and N fertilization on these parameters. The mass of LFOC and LFON in soil tended to increase with SRet (by 285 kg C ha−1 for LFOC and 12.6 kg N ha−1 for LFON with annual rate of 100 kg N ha−1 for 27 years), increased with N fertilizer application (by 517 kg C ha−1 for LFOC and 36.0 kg N ha−1 for LFON after 27 years), but was usually higher under CT than ZT (by 451 kg C ha−1 for LFOC and 25.3 kg N ha−1 for LFON after 27 years). Correlations between soil organic C or N fractions were highly significant in most cases. Linear regressions between crop residue C input and soil organic C or N were significant in most cases. The effects of tillage, straw management and N fertilizer on soil were more pronounced for LFOC and LFON than TOC and TON, and also in the surface layers than in the deeper layers. Tillage and straw management had little or no effect on C:N ratios, but the C:N ratios in light organic fractions significantly decreased with increasing N rate (from 20.06 at zero-N to 18.91 at 100 kg N ha−1). Compared to the 1979 results, in treatments that did not receive N fertilizer (CTSRem0, CTSRet0, ZTSRem0 and ZTSRet0), CTSRem0 resulted in a net decrease in TOC concentration (by 1.9 g C kg−1) in the 0–15 cm soil layer in 2007 (after 27 years), with little or no change in the CTSRet0 and ZTSRem0 treatments, while there was a net increase in TOC concentration (by 1.2 g C kg−1) in the ZTSRet0 treatment. Straw retention and N fertilizer application at 50 and 100 kg N ha−1 rates showed a net positive effect on TOC concentration under both ZT (ZTSRet50 by 2.3 g C kg−1 and ZTSRet100 by 3.1 g C kg−1) and CT (CTSRet50 by 3.5 g C kg−1 and CTSRet100 by 1.6 g C kg−1) treatments in 2007 compared to 1979 data. In conclusion, the findings suggest that retention of straw, application of N fertilizer and elimination of tillage would improve soil quality, and this might increase the potential for N supplying power of the soil and sustainability of crop productivity.  相似文献   

15.
Conservation agriculture (CA) characterised by minimal soil disturbance, permanent soil surface cover by dead or living plants and crop rotations is one way of achieving higher soil organic carbon (C) in agricultural fields. Sandy loam and loamy soil samples from zero tillage (ZT) and conventional tillage (CT) plots were taken from farmers’ fields during the dry season in August 2006. Soil organic carbon (SOC) and soil organic nitrogen (SON), microbial biomass carbon (MB-C) and microbial biomass nitrogen (MB-N), C mineralization and SOC distribution in particle size fractions in 0–20 cm layer were evaluated. Forty eight farmers’ fields were randomly sampled at four different locations in Central and Northern Malawi, representing ZT plots maintained for a different number of years, and ten fields under CT with similar soil type and crop grown were selected. SOC and SON in ZT fields were 44 and 41 % (4 years ZT) and 75 and 77 % (5 years ZT) higher, respectively, than CT plots. MB-C and MB-N in ZT fields were 16 and 44 % (4 years ZT) and 20 and 38 % (5 years ZT) higher, respectively, than CT plots. However, MB-C and MB-N in ZT fields were 27 and 25 % (2 years ZT) and 17 and 9 % (3 years ZT) lower than in CT plots. The proportion of the total organic C as microbial biomass C was relatively higher under CT than ZT treatments. The higher SOC and MB-C content in the ZT fields resulted in 10, 62, 57 % higher C mineralization rate in ZT plots of 3, 4 and 5 years of loamy sand soils and 35 % higher C mineralization rate in ZT plot of 2 years than CT of sandy loam soils in undisturbed soils in the laboratory. Simulating plough from the undisturbed soils that were used for C mineralization experiment resulted in linear curves indicating that all organic C was already depleted during the first incubation period. The relative distribution of soil organic matter (SOM) in silt and clay size fractions was strongly correlated (r = 0.907 and P ≤ 0.01) with silt percentages. Easily degradable carbon pool (CA,f) was correlated (r = 0.867 and P ≤ 0.05) with organic carbon in sand size fraction. In developing viable conservation agriculture practices to optimize SOC content and long-term sustainability of maize production systems, priority should be given to the maintenance of C inputs, crop rotations and associations and also to reduced soil disturbance by tillage.  相似文献   

16.
Nutrient inputs into crop production systems through fertilisation have come under increased scrutiny in recent years because of reduced nutrient use efficiency and increased environmental impact. Fifteen years of experimental data on dynamics of N, P and K in soil, crop yield and nutrient uptake from nine fertilisation treatments at Zhengzhou, North China Plain, were used to analyse the contribution of different fertilisation treatments to crop yield, nutrient use efficiency and accumulation of nutrients in soil. The results showed that both N and P were limiting factors for crop growth. Without additional N and P fertilisation, only a very low yield level (ca 2 t ha−1 for wheat and 3 t ha−1 for maize) could be maintained. To achieve the potential productivity (i.e. yield level free of water and nutrient stresses) of wheat (6.9 t ha−1) and maize (8.3 t ha−1), wheat would need, on average, 170 kg N ha−1, 32 kg P ha−1 and 130 kg K ha−1, while maize would need 189 kg N ha−1, 34 kg P ha−1 and 212 kg K ha−1. The N and P demands correspond well to the N and P levels supplied in one of the fertilisation treatments (NPK), while K deficiency could occur in the future if no crop residues were returned or no extra K was applied. On average under this NPK treatment, 80% of N and 71% of P could be recovered by the wheat–maize system. Treatments with nutrient inputs higher than the NPK treatment and treatments without combination of N and P have led to accumulation of N and P in the soil profile. The input levels of N and P in the NPK treatment are recommended in fertiliser management, with additional K to avoid future soil K deficiency.  相似文献   

17.
Use of perennial grasses as vegetative barriers to reduce soil erosion from farm and non-farm lands is increasing world-over. A number of perennial grasses have been identified for their soil conserving properties, but their effectiveness varies with location and method of planting. Installing vegetative barriers in combination with suitable mechanical measures, like bunds or trenches or both, on the appropriately spaced contours may enhance their conservation potential. Hence, the effect of vegetative barriers, viz., sambuta (Saccharum spp.)—a local grass, vetiver (Vetiveria zizanioides) and lemongrass (Cymbopogon citratus) planted in combination with trench-cum-bund, on runoff, soil loss, nutrient loss, soil fertility, moisture retention and crop yield in the rainfed uplands, was studied in Kokriguda watershed in southern Orissa, India through 2001–2005. However, runoff, soil and nutrient losses were studied for 2002, 2003 and 2004 only. Analysis of the experimental data revealed that on a 5% slope, the lowest average runoff (8.1%) and soil loss (4.0 Mg ha−1) were observed in the sambuta + trench-cum-bund treatment followed by vetiver + trench-cum-bund (runoff 9.8%, soil loss 5.5 Mg ha−1). Lemongrass permitted the highest runoff and soil loss. Further, the conservation effect of grass barriers was greater under bund planting than berm planting. Minimum organic C (50.02 kg ha−1), available N (2.49 kg ha−1) and available K (1.56 kg ha−1) loss was observed under sambuta with bund planting. The next best arrester of the soil nutrients was vetiver planted on bund. Significantly better conservation of nutrients under sambuta and vetiver resulted in the soil fertility build-up. Soil moisture content was also higher in the sambuta and vetiver than lemongrass treated plots. Increase in the yield of associated finger millet (Eleusine coracana (L.) Gaertn.) due to vegetative barriers ranged from 18.04% for lemongrass to 33.67% for sambuta. Further, the sambuta and vetiver treated plots produced 13.23 and 11.86% higher yield, respectively, compared to the plots having lemongrass barrier (1.17 Mg ha−1). Considering the conservation potential, and crop yield and soil fertility improvements, the sambuta barrier with trench-cum-bund is the best conservation technology for treating the cultivated land vulnerable to water erosion. Farmers also showed greater acceptance for the sambuta barrier as it is erect growing and available locally. Vetiver with-trench-cum bund can be the second best option.  相似文献   

18.
Sustainable soil fertility management depends on long-term integrated strategies that build and maintain soil organic matter and mineralizable soil N levels. These strategies increase the portion of crop N needs met by soil N and reduce dependence on external N inputs required for crop production. To better understand the impact of management on soil N dynamics, we conducted field and laboratory research on five diverse management systems at a long-term study in Maryland, the USDA- Agricultural Research Service Beltsville Farming Systems Project (FSP). The FSP is comprised of a conventional no-till corn (Zea mays L.)–soybean (Glycine max L.)–wheat (Triticum aestivum L.)/double-crop soybean rotation (NT), a conventional chisel-till corn–soybean–wheat/soybean rotation (CT), a 2 year organic corn–soybean rotation (Org2), a 3 year organic corn–soybean–wheat rotation (Org3), and a 6 year organic corn–soybean–wheat–alfalfa (Medicago sativa L.) (3 years) rotation (Org6). We found that total potentially mineralizable N in organic systems (average 315 kg N ha−1) was significantly greater than the conventional systems (average 235 kg N ha−1). Particulate organic matter (POM)–C and –N also tended to be greater in organic than conventional cropping systems. Average corn yield and N uptake from unamended (minus N) field microplots were 40 and 48%, respectively, greater in organic than conventional grain cropping systems. Among the three organic systems, all measures of N availability tended to increase with increasing frequency of manure application and crop rotation length (Org2 < Org3 ≤ Org6) while most measures were similar between NT and CT. Our results demonstrate that organic soil fertility management increases soil N availability by increasing labile soil organic matter. Relatively high levels of mineralizable soil N must be considered when developing soil fertility management plans for organic systems.  相似文献   

19.
Recent trends in phosphate balance nationally and by region in Japan   总被引:3,自引:1,他引:2  
A reduction in chemical phosphate (P) fertilizer application to farmland from 137.6 kg P ha−1 in 1985 to 99.0 kg P ha−1 in 2005 and in manure application from 42.4 kg P ha−1 in 1985 to 32.8 kg P ha−1 in 2005 did not reduce crop P uptake, which averaged 27 kg P ha−1 over the period. Phosphate balance on farmland declined from 153.0 kg P ha−1 in 1985 to 105.4 kg P ha−1 in 2005 while livestock excreta disposal increased from 12.7 kg P ha−1 in 1985 to 23.7 kg P ha−1 in 2005. As a result, residual P associated with agriculture declined from 165.8 kg P ha−1 in 1985 to 129.1 kg P ha−1 in 2005. Phosphate utilization efficiency increased from 15.7% in 1985 to 20.1% in 2005. Median, minimum and maximum values of P flows by region showed similar trends. Phosphate input and withdrawal through crop production by region were not related to regional nitrogen (N) input and withdrawal through crop production. Although non-utilized P associated with agriculture has declined nationally and regionally, it is still higher than that in foreign countries, because of high chemical P fertilizer inputs and low crop yield withdrawal. Because soil P fertility was often sufficiently high previous large P surpluses, reducing P applications did not affect crop yields. Crop P uptake was less than half that of crop N yield. These results indicate that P inputs, especially by chemical fertilizer, for crop production could be reduced, thereby reducing negative environmental effects such as eutrophication of soil and water and conserving limited P resources.  相似文献   

20.
A 19-year field experiment on a Mollisol agroecosystem was carried out to study the productivity of a wheat-maize-soybean rotation and the changes in soil carbon and nutrient status in response to different fertiliser applications in Northeast China. The experiment consisted of seven fertiliser treatments: (1) unfertilised control, (2) annual application of P and K fertilisers, (3) N and K fertilisers, (4) N and P fertilisers, (5) N, P and K fertilisers, (6) N, K and second level P fertilisers, and (7) N, P and second level K fertilisers. Without fertiliser, the Mollisols could support an average yield of 1.88 t ha−1 for wheat, 3.89 t ha−1 for maize and 2.12 t ha−1 for soybean, compared to yields of 3.20, 9.30 and 2.45 t ha−1 respectively for wheat, maize and soybean if the crop nutrient demands were met. At the potential yield level, the N, P and K removal by wheat are 79 kg N ha−1, 15 kg P ha−1, and 53 kg K ha−1, by maize are 207 kg N ha−1, 47 kg P ha−1, and 180 kg K ha−1, by soybean are 174 kg N ha−1, 18 kg P ha−1, and 55 kg K ha−1. Crop yield, change in soil organic carbon (SOC), and the total and available nutrient status were used to evaluate the fertility of this soil over different time periods. This study showed that a fertiliser strategy that was able to maintain yields in the short term (19 years) would not maintain the long term fertility of these soils. Although organic carbon levels did not rise to the level of virgin soil in any treatment, a combination of N, P and K fertiliser that approximated crop export was required to stabilise SOC and prevent a decline in the total store of soil nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号