首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ying M  Zhuo S  Chen G  Zhuo C  Lu J  Zhu W  Xie S  Chen J  Yan J 《Scanning》2012,34(3):181-185
In contrast to colonoscopy biopsy, which contains several disadvantages such as bleeding, sampling error, crush artifact, and time-consuming pathological procedure, multiphoton microscopy (MPM) enables direct noninvasive visualization of tissue architecture and cell morphology in live tissues without the administration of exogenous contrast agents. We performed a proof-of-principle study to evaluate the feasibility of using MPM to make real-time noninvasive optical diagnosis of colorectal cancer by investigating 30 fresh, unfixed, and unstained full-thickness colorectal specimens. We found that MPM images demonstrated irregular tubular structures, reduced stroma, and cellular and nuclear pleomorphism in the cancerous tissues. Cancer cells, characterized by irregular size and shape, enlarged nuclei, and increased nuclear-cytoplasmic ratio, were clearly observed in MPM images, which were comparable to golden standard hematoxylin-eosin staining images. Our findings showed that MPM had the potential to make real-time noninvasive optical diagnosis of colorectal cancer. With miniaturization and integration of colonoscopy, MPM has a promising future in real-time noninvasive "optical biopsy" for colorectal cancer.  相似文献   

2.
A new noninvasive microscopic technique of three-dimensional optical biopsy from in vivo human skin based on real-time confocal microscopy and computer reconstruction is demonstrated. A tandem scanning confocal microscope is a prototype of a mobile, flexible design for the in-depth microscopic exploration of the skin on the human body. The various skin layers were observed in real-time, at the subcellular level down to a depth of 200 μm with a vertical resolution of 2 μm. Rapid video recording of the Z-series through the ventral aspect of the forearm avoided shifts caused by subject movement and blood flow pulsations. Two video frames were averaged, and the average was digitized, providing a stack of 64 optical sections in 1-μm vertical steps. Three-dimensional reconstructions of in vivo human skin were obtained with sets of orthogonal slices, and slices at arbitrary planes through a volume containing the stack of slices. This method clearly shows the spatial relationships between the different cell layers. The use of orthogonal cutting planes is preferred because of its analogy with classical vertical sections of histopathology. Linear structures (surface lines) within the stratum corneum are described and their global orientations were determined by the use of Fourier transform analysis. En face optical sections constitute unusual views of this tissue, since typical pathohistological studies are based on sagittal (vertical) slices. The noninvasive optical microscopic technique provides a three-dimensional optical biopsy of in vivo human skin.  相似文献   

3.
A major challenge of cancer biology is to visualize the dynamics of the metastatic process in secondary organs at high optical resolution in vivo real-time. Here, we presented intravital, dual-colored imaging of liver metastasis formation from a single cancer cell to metastatic colonies in the living liver of living mice using two photon laser scanning microscopy (TPLSM). Red fluorescent protein expressing murine (SL4) or human (HT29) colorectal cancer cell lines were inoculated to the spleen of green fluorescent protein expressing mice. Intravital TPLSM was performed by exteriorizing and fixing the liver lobe of living mice. This was repeated several times for the long-term imaging of the same mouse. Viable cancer cells in the living liver of living mice were visualized intravitally at a magnification of over 600×. Single cancer cells were arrested within hepatic sinusoids 2 h after injection. Platelet aggregation surrounding a cancer cell was observed, indicating a phenomenon of tumor-cell induced platelet aggregation. Cancer cells were extravasated from hepatic sinusoids to the space of Disse. Protrusions of Kupffer cells surrounding a cancer cell were observed, indicating that Kupffer cells appear to phagocytose cancer cells. SL4 cells formed liver metastatic colonies with extensive stromal reaction. Liver metastases by HT29 cells were observed as a cluster of micrometastatic nodules. High-resolution, dual-colored, real-time visualization of cancer metastasis using intravital TLPSM can help to understand spatiotemporal tumor-host interactions during metastatic processes in the living organs of living animals.  相似文献   

4.
多尺度区域生长与去粘连模型的乳腺细胞分割   总被引:1,自引:0,他引:1       下载免费PDF全文
乳腺癌已经成为女性最常见的恶性肿瘤,组织切片显微图像的病理分析是诊断的主要手段,细胞的准确分割是病理分析的重要环节。该文提出了一种新的乳腺细胞显微图像的自动分割算法:首先结合小波分解和多尺度区域生长算法分离细胞和背景,实现对细胞的精确定位;然后采用改进的数学形态学对粘连细胞进行一次细分割;接着再采用基于曲率尺度空间(CSS)的角点检测分割算法对粘连细胞进行二次细分割;两次细分割方法构成了一个双策略去粘连模型,保证了去粘连的准确性和鲁棒性。将算法应用到22幅乳腺细胞显微图像上,可以对不同类型的乳腺细胞图像进行全自动分割,有较高的分割灵敏度(0.944±0.024)和特异度(0.937±0.038),且具有较好的普适性。  相似文献   

5.
The analysis of histological sections has long been a valuable tool in the pathological studies. The interpretation of tissue conditions, however, relies directly on visual evaluation of tissue slides, which may be difficult to interpret because of poor contrast or poor color differentiation. The Chromatic Contrast Visualization System (CCV) combines an optical microscope with electronically controlled light-emitting diodes (LEDs) in order to generate adjustable intensities of RGB channels for sample illumination. While most image enhancement techniques rely on software post-processing of an image acquired under standard illumination conditions, CCV produces real-time variations in the color composition of the light source itself. The possibility of covering the entire RGB chromatic range, combined with the optical properties of the different tissues, allows for a substantial enhancement in image details. Traditional image acquisition methods do not exploit these visual enhancements which results in poorer visual distinction among tissue structures. Photodynamic therapy (PDT) procedures are of increasing interest in the treatment of several forms of cancer. This study uses histological slides of rat liver samples that were induced to necrosis after being exposed to PDT. Results show that visualization of tissue structures could be improved by changing colors and intensities of the microscope light source. PDT-necrosed tissue samples are better differentiated when illuminated with different color wavelengths, leading to an improved differentiation of cells in the necrosis area. Due to the potential benefits it can bring to interpretation and diagnosis, further research in this field could make CCV an attractive technique for medical applications.  相似文献   

6.
The three-dimensional fine architecture of the red pulp of human and animal spleens, which as fixed by a modified version of the arterial and venous pressure-loading perfusion fixation (AVPL perfusion fixation) method, is demonstrated by scanning and transmission electron microscopy. In the human spleen, changes in splenomegalias associated with hereditary spherocytosis and chronic portal hypertension are also introduced in addition to the normal architecture of the red pulp of spleens removed from patients with stomach cancer. The AVPL perfusion fixation of these spleens clearly visualized complicated three-dimensional fine architecture of the red pulp and provided much important information on in situ morphology and dynamic change of the terminal vascular bed, including venous pressure-dependent size change of the stomata and three-dimensional shapes of the capillary terminal, with positive proof of their opening into the cordal reticular tissue. In studies of the spleen associated with portal hypertension, the AVPL perfusion fixation is considered a necessary technique for analysis of the structural deviation closely relating to a very high venous pressure.  相似文献   

7.
Precision medicine is based on the identification of biomarkers of tumor development and progression. Liquid biopsy is at the forefront of the ability to gather diagnostic and prognostic information on tumors, as it can be noninvasively performed prior or during treatment. Liquid biopsy mostly utilizes circulating tumor cells, or free DNA, but also exosomes. The latter are nanovesicles secreted by most cell types, found in any body fluid that deliver proteins, nucleic acids and lipids to nearby and distant cells with a unique homing ability. Exosomes function in signalling between the tumor microenvironment and the rest of the body, promoting metastasis, immune remodelling and drug resistance. Exosomes are emerging as a key tool in precision medicine for cancer liquid biopsy, as they efficiently preserve their biomarker cargo. Moreover, exosomes strongly resemble the parental cell, which can help in assessing the oxidative and metabolic state of the donor cell. In this respect, exosomes represent one of the most promising new tools to fight cancer. This review will discuss the clinical applications of profiling exosomal proteins and lipids by high-throughput proteomics and metabolomics, and nucleic acids by next generation sequencing, as well as how this may allow cancer diagnosis, therapy response monitoring and recurrence detection.  相似文献   

8.
Epithelial-mesenchymal transition (EMT) is a key event in cancer metastasis and is characterized by increase in cell motility, increase in expression of mesenchymal cell markers, loss of proteins from cell-to-cell junction complexes, and changes in cell morphology. Here, the morphological effects of a representative EMT inducer, transforming growth factor (TGF)-β1, were investigated in human lung adenocarcinoma (A549) cells and pancreatic carcinoma (Panc-1) cells. TGF-β1 caused morphological changes characteristic of EMT, and immunostaining showed loss of E-cadherin from cell-to-cell junction complexes in addition to the upregulation of the mesenchymal marker vimentin. During scanning electron microscopy (SEM) with an ionic liquid, we observed EMT-specific morphological changes, including the formation of various cell protrusions. Interestingly, filopodia in mitotic cells were clearly observed by SEM, and the number of these filopodia in TFG-β1-treated mitotic cells was reduced significantly. We conclude that this reduction in such mitotic protrusions is a novel effect of TGF-β1 and may contribute to EMT.  相似文献   

9.
Biopsy is a method commonly used for early cancer diagnosis. However, bleeding complications of widely available biopsy are risky for patients. Safer biopsy will result in a more accurate cancer diagnosis and a decrease in the risk of complications. In this article, we propose a novel biopsy needle that can reduce bleeding during biopsy procedures and achieve stable hemostasis. The proposed biopsy needle features a compact structure and can be operated easily by left and right hands. A predictive model for puncture force and tip deflection based on coupled Eulerian–Lagrangian (CEL) method is developed. Experimental results show that the biopsy needle can smoothly deliver the gelatin sponge hemostatic plug into the tissue. Although the hemostatic plug bends, the overall delivery process is stable, and the hemostatic plug retains in the tissue without being affected by the withdrawal of the needle. Further experiments indicate that the specimens are well obtained and evenly distributed in the groove of the outer needle without scattering. Our proposed design of biopsy needle possesses strong ability of hemostasis, tissue cutting, and tissue retention. The CEL model accurately predicts the peak of puncture force and produces close estimation of the insertion force at the postpuncture stage and tip position.  相似文献   

10.
An immunogold–silver staining (IGSS) technique for the light microscopical detection of leucocyte cell surface antigens in cell suspensions and cryostat sections is described. The specimens were first incubated with monoclonal mouse antibodies and then with colloidal gold-labelled goat anti-mouse antibodies. They were then immersed in a physical developer, counterstained and mounted. In light microscopy, the tissue architecture and the cellular morphology were well preserved. Positive cells showed dark granules on their surface membranes. Optimal labelling conditions were determined. This method proved to be a reliable tool for the enumeration of T-cells and their subsets in peripheral blood. The dense labelling permitted the use of panoptic counterstains like May-Grünwald-Giemsa or Wright's stain. This IGSS technique was used to determine the distribution of the T- and B-cell subsets in cryostat sections of reactive lymph nodes. The sensitivity of the method was comparable with that of immunofluorescence microscopy for cell suspensions and that of the biotin–avidin–peroxidase technique for tissue sections. Immunogold–silver staining was combined with enzyme cytochemistry. In dark-field or epipolarization microscopy the labelling appeared as bright granules on a dark background. With its dense granular membrane labelling and its good morphology IGSS is an ideal method for the study of particular cell types in mixed cell suspensions. In addition, it could be a general method for the detection of cell surface antigens in all kinds of cells and tissues.  相似文献   

11.
目的探讨腺泡状软组织肉瘤的PET/CT表现。方法 10例经病理证实的腺泡状软组织肉瘤,术前均行18F-FDG PET/CT检察,对肿瘤的影像学表现及临床特征进行分析。结果原发灶PET/CT影像多呈不规则形状,信号不均匀。SUVmax值8,最小为1.7,平均值4.35,10例患者中9例发生复发或转移,PET/CT发现肺转移8例,软组织转移6例,脑转移1例,局部淋巴结转移6例,骨转移5例。而相应的CT检查仅发现肺转移5例,骨转移2例,软组织转移均没有发现。结论18F-FDGPET/CT有助于腺泡状软组织肉瘤的诊断和分期,从而指导治疗方案的选择。  相似文献   

12.
Three-dimensional (3-D) cell morphology is important for the understanding of cell function and can by quantified in terms of volume and surface area. Differential interference contrast (DIC, or Nomarski) imaging can enable cell edges to be clearly visualized in unstained tissue due to the slight difference in refractive index between aqueous media and cytoplasm. DIC is affected in only one direction - the direction of the optical shear. A 1-D edge detector was used in that direction with a scale length equal to that of an in-focus edge to highlight cell boundaries. By comparison with the signal from the edge detector on an out-of-focus slice, the in-focus slices could be segmented and, after noise suppression, cell outlines obtained. A voxel paradigm was used to calculate cell volume and differential geometry was used for surface area estimation. We applied this approach to obtain 3-D dimensional information by optical sectioning of motile Amoeba proteus.  相似文献   

13.
分析了网络化测试3种应用模式,提出网络化测试系统多层体系结构模型和功能模型,并给出基于LabVIEW的网络化虚拟仪器开发方法。最后以齿轮箱为对象,构建了基于PXI的网络测试平台,开发了齿轮箱诊断信号分析方法库,运用远程虚拟面板技术和DataSocket技术实现了振动信号的网络化测试。  相似文献   

14.
The rapid development of three‐dimensional (3D) culture systems and engineered cell‐based tissue models gave rise to an increasing need of new techniques, allowing the microscopic observation of cell behavior/morphology in tissue‐like structures, as clearly signalled by several authors during the last decennium. With samples consisting of small aggregates of isolated cells grown in suspension, it is often difficult to produce an optimal embedded preparation that can be further successfully processed for classical histochemical investigations. In this work, we describe a new, easy to use, efficient method that enables to embed an enriched “preparation” of isolated cells/small 3D cell aggregates, without any cell stress or damage. As for after tissue‐embedding procedures, the cellular blocks can be further suitably processed for efficient histochemical as well as immunohistochemical analyses, rendering more informative‐and attractive‐studies onto 3D cell‐based culture of neo‐tissues. Microsc. Res. Tech. 78:249–254, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
We have developed a near‐video‐rate dual‐mode reflectance and fluorescence confocal microscope for the purpose of imaging ex vivo human specimens and in vivo animal models. The dual‐mode confocal microscope (DCM) has light sources at 488, 664 and 784 nm, a frame rate of 15 frames per second, a maximum field of view of 300 × 250 μm and a resolution limit of 0.31 μm laterally and 1.37 μm axially. The DCM can image tissue architecture and cellular morphology, as well as molecular properties of tissue, using reflective and fluorescent molecular‐specific optical contrast agents. Images acquired with the DCM demonstrate that the system has the sub‐cellular resolution needed to visualize the morphological and molecular changes associated with cancer progression and has the capability to image animal models of disease in vivo. In the hamster cheek pouch model of oral carcinogenesis, the DCM was used to image the epithelium and stroma of the cheek pouch; blood flow was visible and areas of dysplasia could be distinguished from normal epithelium using 6% acetic acid contrast. In human oral cavity tissue slices, DCM reflectance images showed an increase in the nuclear‐to‐cytoplasmic ratio and density of nuclei in neoplastic tissues as compared to normal tissue. After labelling tissue slices with fluorescent contrast agents targeting the epidermal growth factor receptor, an increase in epidermal growth factor receptor expression was detected in cancerous tissue as compared to normal tissue. The combination of reflectance and fluorescence imaging in a single system allowed imaging of two different parameters involved in neoplastic progression, providing information about both the morphological and molecular expression changes that occur with cancer progression. The dual‐mode imaging capabilities of the DCM allow investigation of both morphological changes as well as molecular changes that occur in disease processes. Analyzing both factors simultaneously may be advantageous when trying to detect and diagnose disease. The DCM's high resolution and near‐video‐rate image acquisition and the growing inventory of molecular‐specific contrast agents and disease‐specific molecular markers holds significant promise for in vivo studies of disease processes such as carcinogenesis.  相似文献   

16.
17.
In astronomy, adaptive optics (AO) can be used to cancel aberrations caused by atmospheric turbulence and to perform diffraction-limited observation of astronomical objects from the ground. AO can also be applied to microscopy, to cancel aberrations caused by cellular structures and to perform high-resolution live imaging. As a step toward the application of AO to microscopy, here we analyzed the optical properties of plant cells. We used leaves of the moss Physcomitrella patens, which have a single layer of cells and are thus suitable for optical analysis. Observation of the cells with bright field and phase contrast microscopy, and image degradation analysis using fluorescent beads demonstrated that chloroplasts provide the main source of optical degradations. Unexpectedly, the cell wall, which was thought to be a major obstacle, has only a minor effect. Such information provides the basis for the application of AO to microscopy for the observation of plant cells.  相似文献   

18.
19.
A modified tandem scanning confocal microscope was used for real-time in vivo examination of the rabbit cornea following a cryogenic injury. The corneas of New Zealand white rabbits were frozen with a probe that had been cooled by immersion in liquid nitrogen, effectively destroying keratocytes in a central 5 mm diameter zone throughout the total thickness of the cornea. In these eyes, keratocyte repopulation and corneal stromal wound healing proceeded similarly to that which occurs after epikeratophakia, a refractive surgical procedure designed to change the curvature and optical power of the cornea. In epikeratophakia, a cryolathed donor corneal stroma lenticule is sutured onto the bare stroma of the recipient cornea. The collagen tissue lenticule is repopulated by keratocytes (corneal fibroblasts) that migrate in from the host cornea. In our study, the confocal microscope permitted sequential, noninvasive examination of the corneal stroma in the treated animals. Necrosis of the keratocytes, followed by activation of the remaining viable cells in the corneal periphery, was observed in the first 2 to 3 days after cryo injury. A fine stromal fibrous network was seen to develop; in three eyes, this network progressed to the development of a retrocorneal fibrous membrane and dense stromal fibrosis, both of which resulted in significant loss of corneal clarity. Our results suggest that the confocal microscope may be a valuable tool to provide much needed information on wound healing processes at the cellular level after corneal surgery and injury.  相似文献   

20.
A modified tandem scanning confocal microscope was used for real-time in vivo examination of the rabbit cornea following a cryogenic injury. The corneas of New Zealand white rabbits were frozen with aprobe that had been cooled by immersion in liquid nitrogen, effectively destroying keratocytes in a central 5 mm diameter zone throughout the total thickness of the cornea. In these eyes, keratocyte repopulation and corneal stromal wound healing proceeded similarly to that which occurs after epikeratophakia, a refractive surgical procedure designed to change the curvature and optical power of the cornea. In epikeratophakia, a cryolathed donor corneal stroma lenticule is sutured onto the bare stroma of the recipient cornea. The collagen tissue lenticule is repopulated by keratocytes (corneal fibroblasts) that migrate in from the host cornea. In our study, the confocal microscope permitted sequential, noninvasive examination of the corneal stroma in the treated animals. Necrosis of the keratocytes, followed by activation of the remaining viable cells in the corneal periphery, was observed in the first 2 to 3 days after cryo injury. A fine stromal fibrous network was seen to develop; in three eyes, this network progressed to the development of a retrocorneal fibrous membrane and dense stromal fibrosis, both of which resulted in significant loss of corneal clarity. Our results suggest that the confocal microscope may be a valuable tool to provide much needed information on wound healing processes at the cellular level after corneal surgery and injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号