首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 61 毫秒
1.
Electrospun nanofibers are excellent candidates for various biomedical applications. We successfully fabricated proanthocyanidin‐crosslinked gelatin electrospun nanofibers. Proanthocyanidin, a low cytotoxic collagen crosslinking reagent, increased the gelatin crosslinking percentage in the nanofibers from 53% to 64%. The addition of proanthocyanidin kept the nanofibers from swelling, and, thus, made the fibers more stable in the aqueous state. The compatibility and the release behavior of the drug in the nanofibers were examined using magnesium ascorbyl phosphate as the model drug. Proanthocyanidin also promoted drug loading and kept the drug release rate constant. These properties make the proanthocyanidin‐crosslinked gelatin nanofibers an excellent material for drug delivery. In the cell culture study, L929 fibroblast cells had a significantly higher proliferation rate when cultured with the gelatin/proanthocyanidin blended nanofibers. This characteristic showed that proanthocyanidin‐crosslinked gelatin electrospun nanofibers could potentially be employed as a wound healing material by increasing cell spreading and proliferation.  相似文献   

2.
Every year, millions of people suffer from dermal wounds caused by heat, fire, chemicals, electricity, ultraviolet radiation or disease. Tissue engineering and nanotechnology have enabled the engineering of nanostructured materials to meet the current challenges in skin treatments owing to such rising occurrences of accidental damages, skin diseases and defects. The abundance and accessibility of adipose derived stem cells (ADSCs) may prove to be novel cell therapeutics for skin regeneration. The nanofibrous PVA/gelatin/azide scaffolds were then fabricated by electrospinning using water as solvent and allowed to undergo click reaction. The scaffolds were characterized by SEM, contact angle and FTIR. The cell–scaffold interactions were analyzed by cell proliferation and the results observed that the rate of cell proliferation was significantly increased (P ≤ 0.05) on PVA/gelatin/azide scaffolds compared to PVA/gelatin nanofibers. In the present study, manipulating the biochemical cues by the addition of an induction medium, in combination with environmental and physical factors of the culture substrate by functionalizing with click moieties, we were able to drive ADSCs into epidermal lineage with the development of epidermis-like structures, was further confirmed by the expression of early and intermediate epidermal differentiation markers like keratin and filaggrin. This study not only provides an insight into the design of a site-specific niche-like microenvironment for stem cell lineage commitment, but also sheds light on the therapeutic application of an alternative cell source—ADSCs, for wound healing and skin tissue reconstitution.  相似文献   

3.
Hydrogel-based biomaterial systems have great potential for tissue reconstruction by serving as temporary scaffolds and cell delivery vehicles for tissue engineering (TE). Hydrogels have poor mechanical properties and their rapid degradation limits the development and application of hydrogels in TE. In this study, nanofiber reinforced composite hydrogels were fabricated by incorporating electrospun poly(ε-caprolactone) (PCL)/gelatin 'blend' or 'coaxial' nanofibers into gelatin hydrogels. The morphological, mechanical, swelling and biodegradation properties of the nanocomposite hydrogels were evaluated and the results indicated that the moduli and compressive strengths of the nanofiber reinforced hydrogels were remarkably higher than those of pure gelatin hydrogels. By increasing the amount of incorporated nanofibers into the hydrogel, the Young's modulus of the composite hydrogels increased from 3.29 ± 1.02 kPa to 20.30 ± 1.79 kPa, while the strain at break decreased from 66.0 ± 1.1% to 52.0 ± 3.0%. Compared to composite hydrogels with coaxial nanofibers, those with blend nanofibers showed higher compressive strength and strain at break, but with lower modulus and energy dissipation properties. Biocompatibility evaluations of the nanofiber reinforced hydrogels were carried out using bone marrow mesenchymal stem cells (BM-MSCs) by cell proliferation assay and immunostaining analysis. The nanocomposite hydrogel with 25 mg ml(-1) PCL/gelatin 'blend' nanofibers (PGB25) was found to enhance cell proliferation, indicating that the 'nanocomposite hydrogels' might provide the necessary mechanical support and could be promising cell delivery systems for tissue regeneration.  相似文献   

4.
In this work, polyvinyl alcohol (PVA), poly(ε-caprolactone) (PCL), and their electrospun PVA/PCL (80/20) hybrid nanofibrous mats were used for the development of active wound dressings. The biocompatibility and therapeutic effects of the developed products were studied by in vitro cell culture and in vivo experimental rat wound model. The release rate measurements by HPLC showed that the PVA nanofibrous sample containing phenytoin sodium (PHT-Na) has a higher level of the drug release compared to the hybrid PVA/PCL (80/20) and PCL nanofibrous mats. A mesenchymal stem cell was seeded on neat as well as drug-loaded PVA nanofibrous mats. The results represented that the mats provide a suitable environment for cell growth and viability. PVA nanofibers containing PHT-Na have a unique performance for fibroblasts and myofibroblasts cells formation and consequently reaching to the remodeling phase and faster healing of the wounds. Also, PHT-Na-loaded electrospun PVA nanofibrous mats showed a remarkable efficiency in wound closure compared with the treatments results from gauze, commercial wound dressing Comfeel®Plus, and 2 % PHT-Na ointment. Histology analysis showed the formation of epidermis, the lack of necrosis, and accumulation of collagen fibers in dermis for PVA nanofibrous mats containing PHT-Na.  相似文献   

5.
Extracellular matrices and degradable nanofibers are two very promising materials in the field of tissue engineering; however both of these structures face limitations as tissue engineering scaffolds. Extracellular matrices, such as collagen, gelatin, and laminin, have excellent biocompatibility and allow cell in growth and survival, but structural weakness makes them difficult to handle and greatly limits their uses. Degradable nanofibers support cell attachment and can provide structural support and directional guidance, but individual degradable nanofibers are fragile and have a tendency to form dense fiber bundles which limit cell penetration into the spaces between the nanofibers, especially in the case of aligned nanofibers. To overcome these difficulties, degradable loose nanofibers were embedded in protein matrix in an attempt to fabricate a hybrid scaffold with improved properties, such as improved strength, guidance, spacing among nanofibers, etc. Polycaprolactone (PCL) was used as a model material for degradable nanofibers. Gelatin was employed as a model protein for matrix structure formation. Thin hybrid films (average thickness = 2.78 um) were fabricated by wetting the loose aligned undirectional nanofiber arrays or loose aligned bi-directional nanofiber grids with a gelatin aqueous solution, which also allows for live cell loading into the nanofiber-protein composite if cell are premixed with protein solution or on the surface of the films. Gelatin film alone without nanofiber reinforcement is difficult to handle due to the weakness of the thin membrane. Gelatin films with a fiber density as low as 3% v/v were structurally robust enough for handling, and manipulation into complex shapes. Mechanical testing confirmed that the addition of nanofibers enhanced the strength of gelatin films, in both dry and hydrated state. In vitro testing confirmed that nanofiber reinforced films were biocompatible and provided cells with directional guidance. Results demonstrate the promise of gelatin/PCL nanofiber composites as a tissue scaffolding material.  相似文献   

6.
In the present study, composite nanofibrous tissue engineering-scaffold consisting of polycaprolactone and gelatin, was fabricated by electrospinning method, using a new cost-effective solvent mixture: chloroform/methanol for polycaprolactone (PCL) and acetic acid for gelatin. The morphology of the nanofibrous scaffold was investigated by using field emission scanning electron microscopy (FE-SEM) which clearly indicates that the morphology of nanofibers was influenced by the weight ratio of PCL to gelatin in the solution. Uniform fibers were produced only when the weight ratio of PCL/gelatin is sufficiently high (10:1). The scaffold was further characterized by Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric (TG) analysis, and X-ray diffraction (XRD). FT-IR and TG analysis indicated some interactions between PCL and gelatin molecules within the scaffold, while XRD results demonstrated crystalline nature of PCL/gelatin composite scaffold. Cytotoxicity effect of scaffold on L929 mouse fibroblast cells was evaluated by MTT assay and cell proliferation on the scaffold was confirmed by DNA quantification. Positive results of MTT assay and DNA quantification L929 mouse fibroblast cells indicated that the scaffold made from the combination of natural polymer (gelatin) and synthetic polymer (PCL) may serve as a good candidate for tissue engineering applications.  相似文献   

7.
Novel cross-linked sponges composed of gelatin/alginate and gelatin/hyaluronate and chitosan/hyaluronate (GH, GA and CH, respectively) were prepared and compared. Six different sponges with or without silver sulfadiazine (AgSD) were applied on the full-thickness dorsal skin defect of Wistar rat. The histology and epidermal wound healing rates of the skin defects were investigated by light microscopy and computerized morphometry 5 and 12 days post-operatively. In our full-thickness wound model (diameter 1 cm), the AgSD-impregnated sponges showed good wound healing performances on the whole. However, there appeared meaningful differences of wound healing between the gelatin-based sponges (GH, GA) and the CH. GH with AgSD was found to show the best wound healing properties as a wound dressing resulting from histological findings and computerized morphometric analysis of epidermal healing.  相似文献   

8.
钱宇娜  李林昊  蒋超  吕永钢  钟莉  杨力 《功能材料》2012,43(18):2473-2477
生物材料组成成分对细胞生物功能有不同的影响。利用静电纺丝技术制备了基于聚己内酯(PCL,polycaprolactone)的不同天然蛋白、多糖(丝素蛋白(SF,silk fibroin)、透明质酸(HA,hyaluronicacid))的混合组分纳米纤维,采用了扫描电镜和接触角对纳米纤维进行基础表征。同时,进一步考察了纳米纤维作为组织工程支架的可行性。研究结果表明SF组分能增加材料的可纺性,有利于细胞的前期黏附,并能够促进细胞增殖。HA组分可以改善材料的亲水性,增加细胞伪足并促进细胞迁移。重要的是,PCL/SF/HA纳米纤维能同时结合SF和HA的优点,有望在组织工程领域得到应用。  相似文献   

9.
An appropriate cell source, effective cell modification, and proper supportive matrices are the main bases of tissue engineering. The effectiveness of anti-mir221 or hydroxyapatite (HA) in improving the osteogenic differentiation of mesenchymal stem cells (MSCs) has been reported previously. Herein, simultaneous application of these osteogenic inducers was investigated in vivo. The Poly-caprolactone (PCL)/HA nanofibers were characterized using contact angle measurement, tensile test, Fourier transform infrared spectroscopy, and electron microscopy. Rat MSCs were isolated, characterized and transfected with anti-mir221. The rats were divided into 4 groups and an 8 mm defect were created in the mid-calvaria of each rat by trephine bur. Group 1 received (PCL)/HA nanofibers, group 2 received (PCL)/HA nanofibers plus autologous MSCs, group 3 received (PCL)/HA nanofibers plus MSCs transfected with anti-mir221, and group 4 rats were left empty as an additional control group. Histomorphometric and radiomorphometric evaluation after 4 and 8 weeks revealed more new bone formation in the cell-treated groups compared to the scaffold alone group. There was evidence for a combination of increased osteoclasts and osteoblast vascular lake containing red blood cells in the anti-mir221 transfected group. New bone penetration into the scaffolds empirically demonstrated the capability of this combination for efficient osteointegration. Altogether, the co-application of HA and anti-mir221 transfected cells can enhance bone healing of the rat skull.  相似文献   

10.
Poly (ɛ‐caprolactone)–chitosan–poly (vinyl alcohol) (PCL: Cs: PVA) nanofibrous blend scaffolds were known as useful materials for skin wound healing and would help the healing process about 50% faster at the final time point. From the previous studies by the authors, PCL: Cs: PVA (in 2: 1: 1.5 mass ratio) nanofibres showed high efficacy in healing on rat models. In this study, the scaffolds were examined in burn and excision wounds healing on dogs as bigger models. The scaffolds were applied on dorsum skin wounds (n  = 5) then macroscopic and microscopic investigations were carried out to measure the wounds areas and to track healing rate, respectively. Macroscopic results showed good aspect healing effect of scaffolds compared with control wounds especially after 21 days post‐operating for both cutting and burn wounds. Pathological studies showed that the healing rates of the wounds covered with PCL: Cs: PVA nanofibrous scaffolds were much rapid compared to untreated wounds in control group. The immunogenicity of the scaffolds in canine model was also investigated. The findings showed that nanofibrous blend scaffolds was not immunogenic in humoural immune responses. All these results indicated that PCL: Cs: PVA nanofibrous web could be considered as promising materials for wounds healings.Inspec keywords: nanofibres, nanomedicine, biomedical materials, polymer fibres, polymer blends, skin, woundsOther keywords: poly(ε‐caprolactone)‐chitosan‐poly (vinyl alcohol) nanofibrous blend scaffolds, skin excisional wounds, burn wounds, canine model, skin wound healing, dorsum skin wounds, macroscopic investigations, microscopic investigations, healing rate, cutting wounds, pathological study, humoural immune responses, nanofibrous web, immunogenicity, time 21 day  相似文献   

11.
A series of carboxymethyl chitosan (CM-chitosan) and gelatin hydrogels were prepared by radiation crosslinking. A pre-clinical study was performed by implantation model and full-thickness cutaneous wound model in Sprague–Dawley rats to preliminarily evaluate the biocompatibility, biodegradability and effects on healing. In the implantation test, as a component of the hydrogels, CM-chitosan showed a positive effect on promoting cell proliferation and neovascularization, while gelatin was efficient to stabilize the structure and prolong the degradation time. To evaluate the function on wound healing, the hydrogels were applied to the relatively large full-thickness cutaneous wounds (Φ3.0 cm). Compared with the control groups, the hydrogel group showed significantly higher percentage of wound closure on days 9, 12 and 15 postoperatively, which was consistent with the significantly thicker granulation tissue on days 3 and 6. All results apparently revealed that the radiation crosslinked CM-chitosan/Gelatin hydrogels could induce granulation tissue formation and accelerate the wound healing.  相似文献   

12.
Poly(caprolactone) (PCL) electrospun nanofibers were modified by aminolysis and collagen was immobilized on the aminolysed PCL nanofibers. Considering low immunogenic response collagen elicits, immobilization of the same is anticipated to enhance the tissue engineering application of the PCL nanofibers. Amino groups were introduced into PCL nanofibers through aminolysis process. Aminolysis of PCL nanofibers was confirmed by electron dispersive X‐ray analysis (EDX). Collagen was immobilized on aminolysed PCL nanofibers using glutaraldehyde as crosslinker. The collagen crosslinking on to PCL nanofibers was established by attenuated total reflectance‐Fourier transform infrared (ATR‐FTIR) spectroscopy. The fiber morphologies of PCL nanofibers at different stages were characterized by scanning electron microscopy (SEM). The change in hydrophobicity of PCL nanofibers due to aminolysis and collagen immobilization was determined by water contact angle measurements. Aminolysis followed by collagen immobilization had reduced the intrinsic hydrophobicity of PCL nanofibers. NIH 3T3 fibroblasts were cultured for 2 days on PCL nanofibers, aminolysed PCL nanofibers, and aminolysed PCL nanofibers crosslinked with collagen. Cell attachment and growth were observed by MTT assay in each case. Collagen immobilization improved the biocompatibility of the PCL nanofibers. Thus the modified PCL nanofibers can be used as suitable broad spectrum scaffold for skin, cartilage, bone, cardiac constructs for efficient tissue engineering applications.  相似文献   

13.
Patel S  Kurpinski K  Quigley R  Gao H  Hsiao BS  Poo MM  Li S 《Nano letters》2007,7(7):2122-2128
Biodegradable nanofibers have tremendous potential for tissue repair. However, the combined effects of nanofiber organization and immobilized bioactive factors on cell guidance are not well understood. In this study, we developed aligned and bioactive nanofibrous scaffolds by immobilizing extracellular matrix protein and growth factor onto nanofibers, which simulated the physical and biochemical properties of native matrix fibrils. The aligned nanofibers significantly induced neurite outgrowth and enhanced skin cell migration during wound healing compared to randomly oriented nanofibers. Furthermore, the immobilized biochemical factors (as efficient as soluble factors) synergized with aligned nanofibers to promote highly efficient neurite outgrowth but had less effect on skin cell migration. This study shed light on the relative importance of nanotopography and chemical signaling in the guidance of different cell behavior.  相似文献   

14.
The biologically synthesised tellurium nanoparticles (Te NPs) were applied in the fabrication of Te NP‐embedded polycaprolactone/gelatin (PCL/GEL) electrospun nanofibres and their antioxidant and in vivo wound healing properties were determined. The as‐synthesised nanofibres were characterised using scanning electron microscopy (SEM), energy‐dispersive X‐ray (EDX) spectroscopy and elemental mapping, thermogravimetric analysis (TGA), and Fourier‐transform infrared (FTIR) spectroscopy. The mechanical properties and surface hydrophobicity of scaffolds were investigated using tensile analysis and contact angle tests, respectively. The biocompatibility of the produced scaffolds on mouse embryonic fibroblast cells (3T3) was evaluated using MTT assay. The highest wound healing activity (score 15/19) was achieved for scaffolds containing Te NPs. The wounds treated with PCL/GEL/Te NPs had inflammation state equal to the positive control. Also, the mentioned scaffold represented positive effects on collagen formation and collagen fibre''s horizontalisation in a dose‐dependent manner. The antioxidative potency of Te NP‐containing scaffolds was demonstrated with lower levels of malondialdehyde (MDA) and catalase (∼3 times) and a higher level of glutathione (GSH) (∼2 times) in PCL/GEL/Te NP‐treated samples than the negative control. The obtained results strongly demonstrated the healing activity of the produced nanofibres, and it can be inferred that scaffolds containing Te NPs are suitable for wound dressing.  相似文献   

15.
以浓度为88%的甲酸溶液作为纺丝溶剂,采用静电纺丝和紫外光照射还原的方法制备了含纳米银颗粒的明胶/壳聚糖纳米纤维。研究发现,壳聚糖的加入量低于明胶质量的3/16时可以得到纳米纤维,纤维平均直径随着硝酸银加入量的增大而减小,纤维表面纳米银的平均直径随着硝酸银加入量的增大而增大,在纺丝体系中硝酸银的加入量存在一个极限值。所制得含纳米银的明胶/壳聚糖纳米纤维对金黄色葡萄球菌和绿脓杆菌具有较好的抑菌性能,纺丝时加入1%硝酸银制得纳米纤维膜的抑菌率达到99%以上,这种抗菌型纳米纤维可以应用于医用敷料等领域。  相似文献   

16.
Polycaprolactone (PCL), poly (lactic acid) (PLA) and hydroxyapatite (HA) are frequently used as materials for tissue engineering. In this study, PCL/PLA/HA nanofiber mats with different weight ratio were prepared using electrospinning. Their structure and morphology were studied by FTIR and FESEM. FTIR results demonstrated that the HA particles were successfully incorporated into the PCL/PLA nanofibers. The FESEM images showed that the surface of fibers became coarser with the introduction of HA nanoparticles into PCL/PLA system. Furthermore, the addition of HA led to the decreasing of fiber diameter. The average diameters of PCL/PLA/HA nanofiber were in the range of 300-600 nm, while that of PCL/PLA was 776 +/- 15.4 nm. The effect of nanofiber composition on the osteoblast-like MC3T3-E1 cell adhesion and proliferation were investigated as the preliminary biological evaluation of the scaffold. The MC3T3-E1 cell could be attached actively on all the scaffolds. The MTT assay revealed that PCL/PLA/HA scaffold shows significantly higher cell proliferation than PCL/PLA scaffolds. After 15 days of culture, mineral particles on the surface of the cells was appeared on PCL/PLA/HA nanofibers while normal cell spreading morphology on PCL/PLA nanofibers. These results manifested that electrospun PCL/PLA/HA scaffolds could enhance bone regeneration, showing their marvelous prospect as scaffolds for bone tissue engineering.  相似文献   

17.
Adipose tissue-derived stem cells (ASCs) are promising candidate in stem cell therapies, and maintaining their stemness potential is vital to achieve effective treatment. Natural-based scaffolds have been recently attracted increasing attention in nanomedicine and drug delivery. In the present study, a polymeric nanofibrous scaffold was developed based on the polycaprolactone/Collagen (PCL/Coll) containing Emu oil as a bioactive material to induce the proliferation of ASCs, while simultaneously preserving the stemness property of those cells. Fabrication of the electrospun Emu oil-loaded PCL/Coll nanofibers was confirmed by using FE-SEM, FTIR, and tensile test. ASCs were seeded on two types of nanofibers (PCL/Coll and Emu oil-loaded PCL/Coll) and their proliferation, cell cycle progression, and stemness gene expressions were evaluated using MTT, propidium iodide staining, and qPCR during 14?days, respectively. The results indicated that ASCs displayed improved adhesion capacity with the higher rates of bioactivity and proliferation on the Emu oil-loaded nanofibers than the other groups. The proliferation capacity of ASCs on Emu oil-loaded PCL/Coll nanofibers was further confirmed by the cell cycle progression analysis. It was also found that Emu oil-loaded nanofibers significantly up-regulated the expression of stemness markers including sox-2, nanog, oct4, klf4, and c-Myc. The results demonstrated that the nanofibers containing Emu oil can reinforce the cell adhesion and enhance ASCs proliferation while preserving their stemness; therefore, using scaffolds containing natural products may have a great potential to enhance the in vitro expansion capacity of ASCs in the field of stem cell therapy and regenerative medicine.  相似文献   

18.
Curcumin (Cur) is a well-known extract of the root of Curcuma longa L. that has multi biological functions such as anti-oxidation, anti-inflammatory, anti-cancer, and wound healing properties. In the present study, poly (lactic acid) (PLA) nanofibers were used as a carrier for Cur because PLA nanofibers are biocompatible and have a high-specific surface area and high porosity, which can enhance the functional properties of Cur. The chemical and biological characteristics of Cur/PLA blended nanofibers containing varied amounts of Cur were examined. An increase from 0.125 to 6.250 wt% Cur in PLA caused a decrease in the diameters of the nanofibers from 971 ± 274 to 562 ± 177 nm. At Cur concentrations of <1.250 wt%, PLA and Cur showed good miscibility in the blended nanofibers, as shown by FTIR analysis and tensile tests. The inclusion of Cur in the blended nanofibers at concentration as low as 0.125 wt% promotes the attachment and proliferation of cells. The in vivo wound healing capability of Cur-loaded PLA nanofibers was assessed in a mouse model; treatment with Cur-loaded PLA nanofibers significantly increased the rate of wound closure (87 %) by day 7 compared with that of PLA nanofibers (58 %). The results of this study suggest that Cur-loaded nanofibers with appropriate Cur concentration are nontoxic and have potential as component of wound-healing patches.  相似文献   

19.
Poly(e-caprolactone) (PCL) is a favorable material for tissue engineering. PCL was successfully fabricated into less than 10 μm thin membranes using a 2-roll-heated-mill and biaxial stretching process. However, PCL is known for its poor cellular adhesion and surface modifications are needed for any tissue engineering applications. This paper reports on a novel surface modification technique of the PCL membrane by coating with electrospun nanofibers. The purpose was to mimic the architecture of the natural extracellular matrix and create nanotopography for enhanced cellular attachment. The surfaces were characterized by scanning electron microscopy (SEM), water contact angle and atomic force microscopy. The results showed that uniform nanofibrous topology were successfully achieved on the surface of the PCL membrane, with increased roughness (more than 17 times) and surface area. This nanofibrous topology induced capillary effects after sodium hydroxide (NaOH) treatment, causing the water contact angle to drop to almost zero. Scratch tests revealed a strong interaction of PCL nanofiber coating on the PCL membrane. AlamarBlue assay indicated that 3T3 fibroblast cells proliferated well on the nanofibrous membrane. Confocal Laser Scanning Microscope revealed better cell attachment onto the nanofibrous membranes than the untreated membranes. Results from SEM showed that the cells' spindle-shaped morphology on the NaOH-treated fibrous surface was evident while they remained in isolated spherical shaped entities in the non-treated fibrous surfaces.  相似文献   

20.
Recently, attempts have been made to develop nanofiber tubes suitable for nerve regeneration made of biodegradable nanofibers. Among all polymeric nanofibers, poly(ε-caprolactone) (PCL) is distinctively known for better mechanical stability and poly(l-lactic acid) (PLLA) for relatively faster biodegradability. Our purpose of study is to investigate their blending compatibility and the ability to form nanofiber tubes via electrospinning. We electrospun the PCL–PLLA nanofiber tubular using different blend ratios of PCL–PLLA. The electrospun nanofibers were continuously deposited over high speed rotating mandrel to fabricate nanofiber tubes having inner diameter of 2 mm and the wall thickness of 55–65 μm. The diameters of nanofibers were between 715 and 860 nm. The morphologies of PCL–PLLA nanofiber tubes were examined under scanning electron microscope, and showed better structural stability and formability than the neat PLLA nanofibers. Fourier transform infrared spectroscopy study revealed that the PCL–PLLA blend nanofiber exhibited characteristic peaks of both PCL and PLLA and was composition-dependent. Raman and X-ray diffraction studies showed that the increasing PCL ratio in the PCL–PLLA blend increased crystallinity of PCL–PLLA blends. Differential scanning calorimetry revealed recrystallization peaks in PCL–PLLA blends ratios of 1:2 and 1:1. Based on characterization, the electrospun PCL–PLLA nanofiber tubes is considered to be a better candidate for further in vivo or in vitro investigation, and resolve biocompatibility issues in tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号