首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we propose a joint resource allocation, routing, and connection admission control (CAC) scheme for uplink transmission in orthogonal frequency division multiple access (OFDMA) relay networks with cooperative relaying. For cooperative relaying, relay station can relay uplink data from mobile station (MS) to base station with cooperation of the MS using transmit diversity. Transmit diversity can be achieved by virtual MISO via distributed space–time coding. The proposed scheme jointly allocates OFDMA resources and selects path for each user with CAC to maximize the upink throughput of cooperative OFDMA relay networks. The basic OFDMA resource unit is considered as a resource element which is one subcarrier over one OFDMA symbol. An efficient multi-choice multi-dimensional knapsack (MMKP) algorithm is presented for the proposed scheme. The proposed MMKP algorithm provides a unified framework which is applicable to OFDMA networks with and without cooperative relaying. We evaluate the performance of the proposed scheme with and without cooperative relaying in a hilly terrain with heavy tree density by using OPNET-based simulation. We show that the cooperative relaying improve the uplink system throughput compared with non-cooperative relaying, and the proposed scheme outperforms the conventional link quality-based scheme in both cooperative and non-cooperative relay networks.  相似文献   

2.
Energy-efficient communication is an important requirement for mobile relay networks due to the limited battery power of user terminals. This paper considers energy-efficient relaying schemes through selection of mobile relays in cooperative cellular systems with asymmetric traffic. The total energy consumption per information bit of the battery-powered terminals, i. e. , the mobile station(MS)and the relay, is derived in theory. In the joint uplink and downlink relay selection(JUDRS)scheme we proposed, the relay which minimizes the total energy consumption is selected. Additionally, the energy-efficient cooperation regions are investigated, and the optimal relay location is found for cooperative cellular systems with asymmetric traffic. The results reveal that the MS-relay and the relay-base station(BS)channels have different influence over relay selection decisions for optimal energy-efficiency. Information theoretic analysis of the diversity-multiplexing tradeoff(DMT)demonstrates that the proposed scheme achieves full spatial diversity in the quantity of cooperating terminals in this network. Finally, numerical results further confirm a significant energy efficiency gain of the proposed algorithm comparing to the previous best worse channel selection and best harmonic mean selection algorithms.  相似文献   

3.
基于机会中继和最大比合并下的协作通信系统   总被引:3,自引:0,他引:3  
徐峰  岳殿武  严秋娜 《通信学报》2009,30(12):36-44
分析了机会中继和最大比合并下的协作通信系统性能.首次给出了Nakagami衰落信道下的符号错误率和中断概率的精确闭式结果.通过对中断概率的近似结果分析发现对于任意一条源节点-中继-目的节点链路,分集增益均由源节点-中继链路和中继-目的节点链路中的深衰落链路决定.  相似文献   

4.
Using a relaying system to provide spatial diversity and improve the system performance is a tendency in the wireless cooperative communications. Amplify-and-forward (AF) mode with a low complexity is easy to be implemented. Under the consideration of cooperative communication systems, the scenario includes one information source, M relay stations and N destinations. This work proposes a relay selection algorithm in the Raleigh fading channel. Based on the exhaustive search method, easily to realize, the optimal selection scheme can be found with a highly complicated calculation. In order to reduce the computational complexity, an approximate optimal solution with a greedy algorithm applied for the relay station selection is proposed. With different situations of the communication systems, the performance evaluation obtained by both the proposed algorithm and the exhaustive search algorithm are given for comparison. It shows the proposed algorithm could provide a solution approach to the optimal one.  相似文献   

5.
In this paper, we consider a cooperative relay scheme for a mobile network with MIMO technology. The channel capacity for two well‐known relaying schemes are investigated: analogue relaying (amplify and forward) and digital relaying (decode and forward) from a mobile device to the base station through a relay node. In order to further increase the channel capacity, we propose an efficient hierarchical procedure based on support vector machine, namely hierarchical support vector machines (HSVM), to estimate the wireless networks condition approximately and design two ways (matched filter and minimum mean square error filter) of increasing the channel capacity according to the estimated wireless network condition. The proposed HSVM can estimate the wireless networks condition in much shorter time compared with the traditional minimum mean square error scheme without incurring much estimation error, which is spatial, useful for delay sensitive communication. For digital relaying, the effect of imperfect channel decode is also addressed. Our numerical results demonstrate the reduction of estimation complexity by adopting HSVM and the significant improvement of network capacity by applying the matched filter weight at relay nodes according to the network estimation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
一种基于自适应网络卷积编码的协作中继方法   总被引:1,自引:0,他引:1  
淦明  李辉 《电子与信息学报》2011,33(6):1373-1378
在无线衰落信道环境中,协作中继是一种增加额外分集增益的有效方法,而网络编码可以用来提高网络吞吐量。网络编码采用XOR(异或)来混合两个源端的信息包,其稳健性差并且每个中继只能服务两个源端。该文提出一种自适应网络卷积编码协作中继方法,在中继端采用卷积编码方法代替XOR来混合两个或多个源端的信息包,混合后的信息可以看作是卷积编码器的一路输出,然后将其转发给目的端。当信道处于深度衰落时,该文提出了一种宽松自适应网络卷积编码协作中继方法,放松了中继参与转发的条件。该文提出的中继方法稳健性好,可以自适应匹配变化的无线网络拓扑结构,并且减少了网络编码协作中继方法所需要的中继个数。理论分析和仿真结果表明所提出的中继方法相比网络编码协作中继方法在性能上有大幅提高,尤其是随着协作节点数目增加,可保证系统获得稳定的额外满分集增益。  相似文献   

7.

In this paper, we investigate physical-layer security performance of the cooperative vehicular relaying networks, wherein the communication from a source vehicle to the destination vehicle is assisted by an amplify-and-forward (AF) relay vehicle in the presence of a passive eavesdropper vehicle. We assume that the communication links between the vehicles experience double-Rayleigh fading. We also consider two AF relaying protocols: (1) fixed gain relaying which requires partial channel state information (CSI), and (2) variable gain relaying which requires full CSI. Specifically, we derive the novel intercept probability and ergodic secrecy capacity expressions for both fixed and variable gain relaying in the presence of double-Rayleigh fading channels. The numerical and simulation results verify our theoretical and analytical findings, and show the impacts of channel conditions and relay and eavesdropper locations on the system secrecy performance.

  相似文献   

8.
In this paper, we propose a novel cooperative relaying scheme with multiple relays for frequency selective wireless environment. In our proposed scheme, the frequency selective wireless channel is divided into flat fading sub‐channels. Cooperative relaying is then employed over each sub‐channel to improve the system diversity order. We then investigate the asymptotic behavior of the outage probability and show that the proposed scheme achieves full diversity order in both amplify and forward (AF) and adaptive decode and forward (ADF) relaying scenarios. Furthermore, we propose a power allocation strategy to minimize the system outage probability. Simulation results confirm our analysis and show that the proposed power allocation method outperforms uniform power allocation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The basic idea behind cooperative communications is that mobile terminals collaborate to send data to each other. This effectively adds diversity in the system and improves the overall performance. In this paper, we investigate the potential gains of cooperative communication in future home networks. We derive analytical expressions for the error probability of binary phase shift keying (BPSK) signals over Nakagami-m fading channels in a multi relay communication network. Following to the analytical study, we analyze the contribution of cooperative relaying to the 60GHz network connectivity through simulations using a realistic indoor environment model. We compare the performance of different relay configurations under variable obstacle densities. We show that a typical 60GHz indoor network should employ either a multi-relay configuration or a single-relay configuration with a smart relay selection mechanism to achieve acceptable outage rates. In the use of multiple-relay configuration, both analytical and simulation studies indicate that increasing the number of cooperative relays does not improve the system performance significantly after a certain threshold.  相似文献   

10.
魏翼飞  滕颖蕾  王莉  宋梅  满毅 《中国通信》2012,9(6):124-134
In order to save energy and make more efficient use of wireless channel, this article puts forward an energy saving cooperative relaying scheme which actuates the cooperative transmission only when the feedback from the destination indicates failure of the direct transmission. The proposed scheme selects the optimal relay and its corresponding transmission power in each time slot based on channel condition and residual energy with the objective of minimizing energy consumption and extending network lifetime. In the study, the finitestate Markov channel model is used to characterize the correlation structure of channel fading in wireless networks, and the procedure of relay selection and transmission power decision is formulated as a Markov decision process. Numerical and simulation results show that the proposed scheme consumes less energy and prolongs the network lifetime.  相似文献   

11.
An analytical framework to evaluate the performance of different predetection diversity techniques in various mobile radio environments is developed. The average bit-error rate analysis applies to phase coded spread-spectrum systems, over Nakagami multipath fading channels. A simple and practical selection combining rule is considered. Our numerical results reveal that this new low-complexity receiver structure exhibits comparable performance to that of an optimum linear diversity combiner when the channel does not experience severe fading and for small diversity orders, conditioned on the situation that all the diversity branches have identical mean signal strengths. In this study, we also investigate the effect of variations in the mean signal and noise power levels on each of the independent diversity branches. This is an important consideration because in practice equal mean signal strengths rarely occur, which results in loss of diversity gain. We found that the signal-plus-noise-and-interference selection model outperforms the traditional signal-to-interference-plus-noise ratio selection scheme if the discrepancy between the mean signal strengths are small, owing to the statistical nature of the multiple-access interference  相似文献   

12.
研究了Nakagami信道中联合网络编码和双向协作中继选择的中断与平均误码率的性能,基于3个时隙的网络编码方案提出了一种最小化较差用户误码率的协作中继选择策略。在Nakagami信道下,从双向通信的角度,通过理论分析得出其中断概率和平均误码率的解析式和渐近式,同时推导了无协作中继选择时网络编码的中断概率和平均误码率解析式。通过理论分析发现,当Nakagami信道衰落参数降低时,联合网络编码的协作中继选择方案相对于无协作中继选择时的性能增益将逐渐升高。数值仿真实验结果表明,所提策略的平均误码率性能要显著高于无协作中继选择时的网络编码性能。  相似文献   

13.
提出在未来无线家庭网中采用合作分集的思想,通信时利用处于空闲状态的终端用户对所发送信息进行中继发送,保证整个网络误码率性能、中断概率以及发送功率达到最佳折衷.在Nakagami平衰落信道条件下研究了再生中继和非再生中继两种合作方式下的中断概率和误码率性能,给出误码率和中断概率的解析表达式,并用matlaab进行仿真,仿真结果表明,在低信噪比条件下再生中继大大优于非再生中继方式,但高信噪比条件下两者性能接近.  相似文献   

14.
Opportunistic relaying in cooperative communication depends on careful relay selection. However, the traditional centralized method used for opportunistic amplify‐and‐forward protocols requires precise measurements of channel state information at the destination. In this paper, we adopt the max–min criterion as a relay selection framework for opportunistic amplify‐and‐forward cooperative communications, which was exhaustively used for the decode‐and‐forward protocol, and offer an accurate performance analysis based on exact statistics of the local signal‐to‐noise ratios of the best relay. Furthermore, we evaluate the asymptotical performance and deduce the diversity order of our proposed scheme. Finally, we validate our analysis by showing that performance simulation results coincide with our analytical results over Rayleigh fading channels, and we compare the max–min relay selection with their centralized channel state information‐based and partial relay selection counterparts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
The mobile communication channel is very hostile to a DS-CDMA signal and therefore effective techniques are needed to enhance system performance and capacity. Further, since DS-CDMA capacity and performance is limited by the uplink, ways to improve the uplink performance is needed. By implementing antenna arrays, diversity schemes or a combination of antenna arrays and diversity techniques, the uplink performance can be improved substantially. In this study we consider a single cell with a base station at the center with mobiles uniformly distributed around it. As channel model a Nakagami distributed path gain is assumed. This model was chosen for flexibility (e.g., Rayleigh and Rice channel models can be approximated) and also since empirical data suggests that path fading statistics are adequately described by this distribution. At the receiver an array of M antennas is used to discriminate between the users based on their spatial diversity. The fading process at each of the antenna elements is statistically dependent and further improvements can be realized by making use of the independent fading characteristics of the received signal. To make use of this statistical independent information, the performance of a P branch Maximum Ratio Combining (MRC) receiver is also considered. We further investigate the performance of a combination of P clusters of M antennas separated by the coherence bandwidth of the channel, thereby making use of both forms of spatial diversity. A comparison of the three schemes (antenna arrays, MRC diversity and a combination of antenna arrays and MRC diversity) under equal complexity conditions are made under multipath fading conditions. It is shown that the performance and capacity of a MRC diversity receiver outperforms the other two methods when perfect power control is assumed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Fading relay channels: performance limits and space-time signal design   总被引:26,自引:0,他引:26  
Cooperative diversity is a transmission technique, where multiple terminals pool their resources to form a virtual antenna array that realizes spatial diversity gain in a distributed fashion. In this paper, we examine the basic building block of cooperative diversity systems, a simple fading relay channel where the source, destination, and relay terminals are each equipped with single antenna transceivers. We consider three different time-division multiple-access-based cooperative protocols that vary the degree of broadcasting and receive collision. The relay terminal operates in either the amplify-and-forward (AF) or decode-and-forward (DF) modes. For each protocol, we study the ergodic and outage capacity behavior (assuming Gaussian code books) under the AF and DF modes of relaying. We analyze the spatial diversity performance of the various protocols and find that full spatial diversity (second-order in this case) is achieved by certain protocols provided that appropriate power control is employed. Our analysis unifies previous results reported in the literature and establishes the superiority (both from a capacity, as well as a diversity point-of-view) of a new protocol proposed in this paper. The second part of the paper is devoted to (distributed) space-time code design for fading relay channels operating in the AF mode. We show that the corresponding code design criteria consist of the traditional rank and determinant criteria for the case of colocated antennas, as well as appropriate power control rules. Consequently space-time codes designed for the case of colocated multiantenna channels can be used to realize cooperative diversity provided that appropriate power control is employed.  相似文献   

17.
刁新颖 《电子科技》2013,26(5):146-148
研究了协作正交频分复用系统的中继方案,提出了OFDM协作分集系统中的子载波选择算法,根据子信道信息,在容量准则下,选择可以提高系统容量的子载波,以放大前传的方式转发源节点信息。仿真结果表明,在中继节点功率与源节点功率较低或中继节点靠近源或目的节点时,所有子载波都采用中继传输可降低系统容量;子载波选择算法可以改善系统容量,并且选择合适的中继节点发射功率和中继位置,可以显著提高系统容量,当中继节点位于源与目的节点中点时,系统容量最大。  相似文献   

18.
We consider infrastructure-based amplify-and-forward (AF) relaying for extending downlink and uplink coverage areas of a cellular base station. The base station serves multiple mobile users via a multi-hop backhaul relay link by sharing out access link channel resources with maximum signal-to-noise ratio (SNR) scheduling. We analyze the performance of the system by deriving closed-form expressions for outage probability, outage capacity, ergodic capacity, average end-to-end SNR and amount of fading (AoF). These measures show that maximum SNR scheduling of multiple users in a cellular relay link offers significant diversity, capacity and SNR improvement over single-user transmission and round robin scheduling. We also relate performance of the relay link to that of a distributed antenna system (DAS), and show that the noisy wireless backhaul relay link induces tolerable performance deterioration compared to deploying a cable-connected distributed antenna.  相似文献   

19.
In this paper, we investigate the performance assessment of a bidirectional relaying system using energy harvesting techniques. We assume independent and nonidentically distributed (i.n.i.d.) Nakagami‐m fading channels where the amplify‐and‐forward relay is subject to co‐channel interference (CCI) due to transmissions of other transmitters. Two different scenarios, namely, scenario I and scenario II are evaluated. In scenario I, both end‐sources provide the required energy for the relay, whereas the relay also harvests energy from the co‐channel interferes. Then, in the first phase of cooperation, both end‐sources send the information to the relay, and after amplifying the received signal, relay transfers information to the appropriate destination in the second time‐slot. In the scenario II, both end‐sources harvest energy from the relay. After that, the information cooperative transmission is done similar to the first scenario. For both considered scenarios, tight closed‐form expressions of outage probability, symbol error probability, ergodic capacity, and throughput are obtained at arbitrary signal‐to‐noise‐ratios (SNRs). To get more insights, simplified high SNR results for both scenarios are also deduced where the diversity orders are obtained. Monte Carlo simulation results are presented to validate the correctness of our proposed analysis. Our results explicitly demonstrate that the first scenario has a better performance than the second one in the medium and high SNR region, whereas the second scenario outperforms the first one in the low SNR regime.  相似文献   

20.
基于协作通信的最佳中继选择方案   总被引:3,自引:1,他引:2  
协作通信中的机会中继是一种基于即时信道状态选择的中继选择算法,可以获得与传统协作分集技术相同的分集增益,而不需要使用复杂的空时编码技术。但是多个节点同时竞争最佳中继时,可能出现冲突而导致选择失败。提出一种新的方案,通过引入候选节点限制策略以及控制信道对算法进行改进,仿真表明,该算法特别适用于候选中继较多的情况,可以在实现快速选择节点的同时降低选择失败概率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号