首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experimental study on the effects of an applied external electric field on the combustion behavior of solid fuels and solid propellants has been conducted. In an opposed flow burning configuration, application of an electric field was shown to extinguish a paraffin fuel and gaseous oxygen flame over a broad range of operating conditions. When subjected to the electric field, burning paraffin fuel strands were found to extinguish at various axial locations relative to the exit of the oxidizer gas jet. Extinguishment location was found to be a function of field strength as well as electrode surface area, while changes in polarity did not significantly alter the results. In addition, the combustion behaviors of two composite solid rocket propellants were studied while subjected to an external electric field. Both propellants were based on HTPB/AP combinations, with one propellant containing aluminum and the other being non‐aluminized. Application of an electric field to the composite solid rocket propellant strands demonstrated decreases in propellant burning rate under all operating conditions for both propellants including changes in polarity. The flame structure of the aluminized propellant was examined closely as the luminosity, flame length, and flame width varied significantly with field strength and burning location of the strand relative to the electrodes.  相似文献   

2.
Two‐dimensional axisymmetric interior ballistics simulations in projectile acceleration systems that use granular or long slotted tubular solid propellants are performed using the solid/gas two‐phase fluid dynamics code of the Euler‐Lagrange approach. For validation, the simulation results are compared with experimental data for tubular solid propellants. In the series of the interior ballistics simulations, the propellant grain size and shape effects on the firing performance of 50 mm gun are numerically investigated. The propellant grain size and shape affect the energy release rate of the solid propellant charged in the chamber, the projectile kinetic energy at the muzzle, and even the fluctuations of the chamber pressure history. An appropriate burning surface area of the propellant grain exists, so that the projectile can achieve the maximum kinetic energy from the released energy of the solid propellant. Based on the simulation results, guidelines are proposed for the grain size design that enables the propellant energy to be used efficiently.  相似文献   

3.
颗粒粘结高燃速推进剂燃速设计方法的研究   总被引:2,自引:2,他引:0  
介绍了颗粒粘结高燃速固体推进剂的工艺特点,利用推进剂燃烧特征化学基团方法预估了几种小药粒和速燃粘结剂的燃速,提出了颗粒粘结高燃速固体推进剂燃速的设计方法.  相似文献   

4.
Experimental data demonstrating the correlation of parameters in the power-law dependence of the burning rate of composite solid propellants on pressure are reported. The reasons for changes in the burning rate due to changes in propellant mixing conditions are discussed. The deviation of the pressure in the combustor of a solid-propellant rocket motor is analyzed with due allowance for the correlation of parameters in the burning rate law. It is shown that the relative deviation of the burning rate depends on pressure at which propellant combustion occurs. Moreover, for each propellant, there exists a pressure level at which the burning rate deviation is theoretically equal to zero, regardless of the differences in propellant compositions and properties.  相似文献   

5.
Due to various reasons double-base solid propellants have been replaced increasingly by composite propellants in the past years. However, the ALARM rocket motor of the Bayern-Chemie GmbH is one exception. Applications ideal for double-base propellants are short-action rocket motors with burning times ranging from some milliseconds up to approximately 200 ms. Various rocket motors of this type were developed at Dynamit Nobel GmbH for different kinds of application. Based on multiple-tube grains improved designs and manufacturing methods have been developed to enable cost-effective solutions even at low production rates. This includes also simplified test procedures to supervise the propellant fabrication.  相似文献   

6.
Burning rate catalysts are one of the most important components of rocket propellants and are able to enhance solid propellant burning rates. There are several kinds of burning rate catalysts such as nanometal burning rate catalysts, nanometal oxide burning rate catalysts, compound burning rate catalysts, ferrocene and its derivatives burning rate catalysts, and so on. This article reviews the recent research processes in burning rate catalysts.  相似文献   

7.
Cryogenic Solid Propellant (CSP)‐technology is a new approach to develop more powerful rocket motors. CSPs include the advantages of classical solid propellants to save weight as well as those of a high energy content and safety of modern liquid propellants. The charges consist of liquid and/or gaseous fuels and oxidizers, both frozen. Two main versions of CSP‐technology can be realised: 1. Mono‐CSPs show the burning behavior of solid propellants. Experiments with mono‐CSPs have been carried out under inert pressure conditions in a window bomb. Mono‐CSPs have a stable burning behavior with a constant regression rate which follows the Vieille's law under varying pressure conditions. 2. The advantage of high safety is obtained by assembling oxidizer and fuel in sandwich configurations. The grain geometry governs the burning behavior. Such systems can be externally controlled, e.g. by the heat from a gas generator or they can work self‐sustained. A Rod‐in‐Matrix burner shows self‐sustained combustion in an inert pressure atmosphere with overall burning rates in a similar range as solid rocket propellants which obey also a Vieille‐like pressure law. Disc stack burners have also been investigated, the combustion of which is strongly dependent on the disc thickness. For a short time Mach's nodes have been observed in the exhaust plume of a disc stack burner. Currently, the temperature ranges are limited to the boiling temperature of liquid nitrogen. Therefore, liquid oxidizers like H2O2 have been used. However, for the first time a propellant strand of polymer rods embedded in solid oxygen was prepared and burnt. The experiments with CSPs end in the combustion of a small rocket motor showing no serious technical obstacles. Simplified models based on the heat flow equation can simulate the burning characteristics of the frozen energetic materials including phase transitions.  相似文献   

8.
The burning rate pressure relationship is one of the important criteria in the selection of the propellant for particular applications. The pressure exponent (η) plays a significant role in the internal ballistics of rocket motors. Nitramines are known to produce lower burning rates and higher pressure exponent (η) values. Studies on the burning rate and combustion behavior of advanced high‐energy NG/PE‐PCP/AP/Al‐ and NG/PE‐PCP/HMX/AP/Al‐based solid rocket propellants processed by a conventional slurry cast route were carried out. The objective of present study was to understand the effectiveness of various ballistic modifiers viz. iron oxide, copper chromite, lead/copper oxides, and lead salts in combination with carbon black as a catalyst on the burning rate and pressure exponent of these high‐energy propellants. A 7–9 % increase in the burning rates and almost no effect in pressure exponent values of propellant compositions without nitramine were observed. However, in case of nitramine‐based propellants as compared to propellant compositions without nitramines, slight increases of the burning rates were observed. By incorporation of ballistic modifiers, the pressure exponents can be lowered. The changes in the calorimetric values of the formulations by addition of the catalysts were also studied.  相似文献   

9.
Effect of the addition of boron particles on the burning rate of solid propellants was examined. The propellants tested in this study consisted of ammonium perchlorate (AP) as an oxidizer and carboxyl terminated polybutadiene as a fuel binder. The propellant burning rate is increased significantly by the addition of a small amount of boron particles. The burning rate augmentation is dependent largely on the size and concentration of the boron particles mixed. Thermochemical experiments revealed that the boron particles react with the decomposed gases of AP on and just above the propellant burning surface. The heat flux transferred back from the gas phase to the burning surface of the propellant increases with increasing the total surface of the boron particles mixed within the unit mass of propellant. The burning rate augmentation is correlated to the heat of reaction generated by the oxidation reaction of boron particles.  相似文献   

10.
A new device for measuring the linear burning rate of liquid propellants at high pressures is reported. High‐pressure environments were generated by the combustion of solid propellants. The coated propellants, which burn progressively, were introduced to maintain the approximate constant‐pressure environments. By use of ion probe transducers, measurements were made of the spread velocity of the flame surface, i.e. the apparent linear burning rate of the HAN‐based liquid propellant LP1846 (HAN =hydroxylammonium nitrate) was measured quantitatively at pressures from 6 to 28 MPa. The results show that it follows the exponential burning rate law. The burning rate coefficient and exponent were fitted by least‐squares methods. Based on the experiment, a simplified model of the linear burning rate of HAN‐based liquid propellants at high pressures was developed. The numerical simulation is found to be in good agreement with the experimental data.  相似文献   

11.
The properties of HCO and its application as a monopropellant were described. In comparison with HMX, it is also a high energetic explosive with high thermostability and can be used as an oxidizer in solid rocket propellants. Theoretical specific impulse of HCO-double base propellant systems were calculated and the burning rates and thermostability of propellant were experimentally determined. Propellants were prepared with a spray-casting process. As an oxidizer in solid rocket propellant, HCO shows better characteristics under certain aspects compared with HMX.  相似文献   

12.
A solid rocket propellant based on glycidyl azide polymer (GAP) binder plasticized with nitrate esters and oxidized with a mixture of ammonium nitrate (AN) and triaminoguanidine nitrate (TAGN) was formulated and characterized. Non‐lead ballistic modifiers were also included in order to obtain a propellant with non‐acidic and non‐toxic exhaust. This propellant was found to exhibit a burning rate approximately twice that of standard GAP/AN propellants. The exponent of the propellant is high compared to commonly used composite propellants but is still in the useable range at pressures below 13.8 MPa. This propellant may present a good compromise for applications requiring intermediate burn rate and impulse combined with low‐smoke and non‐toxic exhaust.  相似文献   

13.
为了清理火箭发动机内报废的推进剂,采用萃取法对含能组分进行降感处理,研究了萃取剂质量浓度对萃取效果及含能组分溶解度的影响,最后对萃取液中含能组分采用蒸馏方法进行回收。结果表明,从报废复合固体推进剂中萃取出AP后,推进剂的撞击感度、摩擦感度降低60%,推进剂本体发生裂解、失强,有利于发动机内报废推进剂的安全销毁,优选出最优萃取剂为T J-3,AP组分的回收利用使推进剂中大量氧化剂得以回收,有利于环保。  相似文献   

14.
The novel grain‐binding high burning rate propellant (NGHP) is prepared via a solventless extrusion process of binder and spherical propellant grains. Compared with the traditional grain‐binding porous propellants, NGHP is compact and has no interior micropores. During the combustion of NGHP, there appear honeycomb‐like burning layers, which increase the burning surface and the burning rate of the propellant. The combustion of NGHP is a limited convective combustion process and apt to achieve stable state. The larger the difference between the burning rate of the binder and that of the spherical granular propellants exists, the higher burning rate NGHP has. The smaller the mass ratio of the binder to the spherical granular propellants is, the higher the burning rate of NGHP is. It shows that the addition of 3 wt.‐% composite catalyst (the mixture of lead/copper complex and copper/chrome oxides at a mass ratio of 1 : 1) into NGHP can enhance the burning rate from 48.78 mm⋅s−1 in the absence of catalyst to 56.66 mm⋅s−1 at P=9.81 MPa and decrease the pressure exponent from 0.686 to 0.576 in the pressure range from 9.81 to 19.62 MPa.  相似文献   

15.
It is essential to evaluate the mechanical properties of propellants in a solid propellant rocket motor (SPRM) for structural integrity and its performance evaluation before the flight test. Conventionally, uni‐axial tensile testing on an universal testing machine (UTM) is used to evaluate the mechanical properties of solid propellant carton which is cast along with SPRM. Propellants in rocket motors experience various types of loading during storage, transportation, and environmental conditions over the period of time before actual flight whereas the propellant carton doesn’t experience the same as it is stored in magazine. At present, the mechanical properties of propellant cast in a carton are considered to be the mechanical properties of propellant in a rocket motor, which is not truly representative. Therefore, a non‐destructive indentation technique has been used to establish a method for evaluating the mechanical properties of solid propellants in rocket motors based on hydroxyl terminated polybutadiene. The test results obtained using the penetrometer indentation technique was analyzed comprehensively and compared with UTM results. The mathematical correlations were also developed using least square method and established by conducting the penetrometer indentation test on similar propellant composition. Further, the developed correlation was used to evaluate the mechanical properties of propellant in flight SPRM by penetrometer indentation technique.  相似文献   

16.
Effect of tension of a composite propellant on its burning rate   总被引:1,自引:0,他引:1  
Existing concepts of the effect of tensile strains on the burning rate of propellants are analyzed. It is demonstrated that the basic mechanism of increasing burning rate of composite propellants under tension is spalling of the binder from oxidizer particles, formation of an additional burning surface, and changes in the combustion-zone structure. To describe this effect, a rheological model of a composite solid propellant is developed, which takes into account separation of the binder from disperse particles of the fillers (oxidizers, coolants, metals, etc.). A criterion is found, which describes the difference between the propellant behavior under tension with spalling of the binder from the particles and the tension of the same material without the emergence of internal defects. A method of experimental determination of the number of defects arising in the propellant under tension, based on analyzing the tensile stress-strain diagram of the material, is proposed. A mathematical model of composite propellant combustion is developed, which takes into account separation of the binder from the oxidizer particles and formation of an additional burning surface. A correlation between the change in the burning rate of the propellant under tension and parameters of the propellant tensile diagram is found. A method for predicting the change in the burning rate of the propellant under tension on the basis of the propellant tensile diagram shape is developed.  相似文献   

17.
The synthesis and application of hydrogenated hydroxy-terminated polyisoprene (HHTPI) to a fuel binder of composite solid propellants were attempted. An HHTPI prepolymer was synthesized through the hydrogenation for the hydroxy-terminated polyisoprene (HTPI) in the presence of nickel and zirconium catalysts over kieselguhr in 2.0 MPa hydrogen and at 443 K – 453 K for 24h. A prepolymer of a number-averaged molecular weight 2500–3800, provided a viscosity level required for the use of a fuel binder from which solid propellant can be possibly made by means of direct casting method. Thermal stability and aging characteristics of HHTPI elastomer against environmental attacks are superior to those of HTPB. Some plasticizers and bonding agents can bring about the acceptable mechanical properties to the propellant grains mainly composed of HHTPI, ammonium perchlorate and aluminium powder. The linear burning rates of HHTPI-based propellants are at the same level with that of HTPB-based propellants. However, the composition that gives the maximum performance with HHTPI-based propellants, shifts to 1–2 wt% fuel-rich side from the most adequate fuel content 12 wt% in HTPB/AP/Al. The HHPTI propellants indicated the similar burning rate as HTPB-based propellants in the linear burning rates in spite of the comparatively poor ignitability. Nevertheless, the static tests of 100 mm dia. sounding rocket motors are successfully performed by an ignition operation at the pressurized condition. The ballistic performances are not inferior to those of the HTPB-based propellants.  相似文献   

18.
Solid rocket motor design becomes a clamant task where fusion of design and non‐design parameters may lead to various design configurations, especially under uncertainties. This paper proposes a robust design optimization method for the performance of a dual thrust solid rocket motor under investigation of the propellant burning rate and grain geometry uncertainties. It was found that due to uncertainties, the burning rate varies erratically during burning surface area regression, which may lead to catastrophic failure. The present approach aims at uncertainty quantification associated with burning rate and its influence on dual thrust motor performance. A first‐order orthogonal design is applied to estimate the worst case deviation coupled with motor internal ballistics. The robustness assessment is measured directly by a mean‐variance and average difference approach. A sensitivity analysis of performance parameters is performed to analyze the effects of variation of the design parameters. A hybrid genetic algorithm and simulated annealing approach is used as optimizer. The robust design solution obtained in the form of insensitive design and performance parameters shows the effectiveness and efficiency of the proposed methodology.  相似文献   

19.
One of the principal parameters associated with a solid propellant is its linear burning rate. Many attempts have been made in the past to determine theoretically the burning rates of solid propellants by the use of appropriate combustion models. The object of the present paper is to propose a simplified theory of burning rate suitable for composite solid propellants. While the paper follows basically the scheme suggested for this purpose by Beckstead, Derr and Price using multiple flamelets, certain simplifying assumptions have been introduced with a view to make the model easier to operate. An attempt is also made in the paper to extend it to the case of aluminized solid propellants as well on the basis of a specific hypothesis regarding the role of aluminium. The relevant transcendental equations of combustion were solved on a digital computer. The burning rates and related characteristics were evaluated by this technique for two specific ammonium perchlorate-based solid propellants, one aluminized and the other non-aluminized, and the results obtained agree reasonably with the reported experimental trends.  相似文献   

20.
包覆层可靠性对高燃速火药燃速测试的影响及改进   总被引:2,自引:0,他引:2  
利用恒压燃速测试法,测试了经硅橡胶包覆的高燃速药柱的燃速.结果表明,在30~80MPa时,样品燃速出现骤增现象.经分析得出,由于在高压下包覆层与高燃速药柱之间的黏结力降低,导致燃烧过程出现传火现象而使测得的燃速在高压下反常升高.通过采用新的包覆材料及包覆工艺后对药柱进行测试,结果表明,在高压下包覆可靠、燃烧稳定.指出选择传热系数小、黏接可靠的包覆材料是保障高压高燃速火药测试准确性的关键技术.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号