首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
在Si(111)衬底上,以MOCVD方法高温外延生长的AIN为缓冲层,使用氮化物气相外延(HVPE)方法外延生长了15Km的c面GaN厚膜.并利用X射线衍射(XRD)、光致发光谱(PL)、拉曼光谱(Raman)等技术研究了GaN厚膜的结构和光学性质.分析结果表明,GaN厚膜具有六方纤锌矿结构,外延层中存在的张应力较小,...  相似文献   

2.
High-quality GaN epilayers were grown on Si (1 1 1) substrates by molecular beam epitaxy using a new growth process sequence which involved a substrate nitridation at low temperatures, annealing at high temperatures, followed by nitridation at high temperatures, deposition of a low-temperature buffer layer, and a high-temperature overgrowth. The material quality of the GaN films was also investigated as a function of nitridation time and temperature. Crystallinity and surface roughness of GaN was found to improve when the Si substrate was treated under the new growth process sequence. Micro-Raman and photoluminescence (PL) measurement results indicate that the GaN film grown by the new process sequence has less tensile stress and optically good. The surface and interface structures of an ultra thin silicon nitride film grown on the Si surface are investigated by core-level photoelectron spectroscopy and it clearly indicates that the quality of silicon nitride notably affects the properties of GaN growth.  相似文献   

3.
The n-type GaN layers were grown by plasma-assisted MBE and either intentionally doped with Si or unintentionally doped. The optical characteristics of a donor level in Si-doped, GaN were studied in terms of photoluminescence (PL) spectroscopy as a function of electron concentration. Temperature dependent PL measurements allowed us to estimate the activation energy of a Si-related donor from temperature-induced decay of PL intensity. PL peak positions, full width at half maximum of PL and activation energies are found to be proportional to the cube root of carrier density. The involvement of donor levels is supported by the temperature-dependent electron concentration measurements.  相似文献   

4.
Synthesis and characterization of heteroepitaxial GaN films on Si(111)   总被引:1,自引:0,他引:1  
We report crack-free and single-crystalline wurtzite GaN heteroepitaxy layers have been grown on Si (111) substrate by metal-organic chemical vapor deposition(MOCVD). Synthesized GaN epilayer was characterized by X-ray diffraction(XRD), atomic force microscope (AFM) and Raman spectrum. The test results show that the GaN crystal reveals a wurtzite structure with the <0001> crystal orientation and XRD ω-scans showed a full width at half maximum (FWHM) of around 583 arcsec for GaN grown on Si substrate with an HT-AlN buffer layer. In addition, the Raman peaks of E2high and A1(LO) phonon mode in GaN films have an obvious redshit comparing to bulk GaN eigen-frequency, which most likely due to tensile strain in GaN layers. But the AO phonon mode of Si has a blueshit which shows that the Si substrate suffered a compressive strain. And we report that the AlN buffer layer plays a role for releasing the residual stress in GaN films.  相似文献   

5.
采用真空反应法在硅基上制备出了GaN外延层。利用二次离子质谱和X射线光电子能谱对GaN外延层进行了深度剖析和表面分析。结果表明 ,外延层中Ga和N分布均匀 ;在表面处Ga发生了偏聚 ;外延层中还存在Si,O等杂质 ,但这些并未影响到GaN外延层的物相及发光性能。实验还表明 ,在外延生长前采用原位清洗可去除Si衬底表面的氧  相似文献   

6.
The preparation of porous structure on the molecular beam epitaxy (MBE)-grown mixed-polarity GaN epilayers was reported by using the wet chemical etching method. The effect of this porous structure on the residual stress of subsequent-growth GaN epilayers was studied by Raman and photoluminescence (PL) spectrum. Substantial decrease in the biaxial stresse can be achieved by employing the porous buffers in the hydride vapour phase epitaxy (HVPE) epilayer growth.  相似文献   

7.
We have investigated effect of growth temperature on the polytype conversion of cubic GaN (c-GaN) grown on GaAs (001) substrates by MOVPE. It was found that the polytype transition of GaN from zincblende (cubic) to wurtzite (hexagonal) structures is much dependent on the growth temperature. Transmission electron microscopy (TEM) observations demonstrate that the GaN grown layers have the cubic structure (c-GaN) and contain bands of stacking faults (SFs) parallels to {111} planes. For low growth temperatures (∼ 900 °C), XRD results demonstrate that the GaN grown layers with the cubic phase purity higher than 85% were obtained. No different types of single diffraction spots, indicating the incorporation of single-crystal h-GaN, on the selected area diffraction (SAD) pattern was observed. It is also found that a density of SFs decreases with the distance from the interface of c-GaN/GaAs. On the other hand, GaN layers exhibited a transition from cubic to mixed cubic/hexagonal phase under conditions of increasing growth temperature (∼ 960 °C) as determined using TEM-SAD technique with complementary XRD and PL observations. In addition, the optical characteristics of c-GaN layers are shown to be very sensitive to the presence of the single-crystal h-GaN.  相似文献   

8.
In the present paper, we report results of GaN layers grown at 800 °C by metal organic vapour phase epitaxy (MOVPE) on porous silicon (PS) formed on Si(100) substrates. The surface morphology and the crystallinity of the GaN films were characterized by scanning electron microscope and X-ray diffraction. It was shown that GaN grows on PS preferentially on hexagonal polycrystalline form. The SEM observation reveals roughly surface textured by disoriented GaN grains having different shapes and sizes. The surface coverage and the wetting of GaN to PS are improved when the thickness of GaN layer increases. The optical properties of GaN layers were examined by PL and CL at low and room temperatures. Besides, the near edge-band (BE) emission, shows yellow (YL) and deep localized excitons bands at approximately 2.2 and 3.3-3.36 eV respectively. The depth CL analysis shows a spatial variation of the dominating YL and BE emissions as the electron beam energy rises from 3 to 25 kV.  相似文献   

9.
Structural and optical studies have been performed on GaN, InGaN layers, In0.08Ga0.92N/GaN heterostructures, In0.08Ga0.92N/In0.02Ga0.98N single and multiquantum wells grown by metal organic chemical vapor deposition (MOCVD) and GaN by molecular beam epitaxy (MBE) on GaN templates by using transmission electron microscopy (TEM), X-ray diffraction (XRD), and photoluminescence (PL). The layers are found to be high quality with low defect density, on the order of 106 cm?2, which are mainly related to the threading dislocations originating/propagating from the hydride vapor phase epitaxy (HVPE) GaN template. The interface between the layers and substrate could not be detected by TEM and was therefore deemed to be of high quality. Convergent beam electron diffraction studies revealed that the polarity of the films is Ga-polarity, which is the same as that of the substrate. A dual structure with different compositions and having thicknesses of 10 and 25 nm was observed in InGaN layers grown on GaN in one of the heterostructure samples. The full width at half maximum (FWHM) of the XRD rocking curves of (0 0 0 2) for heterostructures and quantum wells were found to be in the range of 15–28 arcmin for a slit width of 2 mm. PL studies on GaN layers grown by MBE and MOCVD on GaN templates are reasonably similar. The PL spectra from all the MBE and MOCVD epilayers and the substrate contain a plethora of sharp peaks related to excitonic transitions. With the presence of donor-bound exciton peaks and their associated two-electron satellites, the binding energies of two distinct shallow donors (28.8 and 32.6 meV), which are attributed to Si and O, respectively, were determined. PL measurements revealed that the FWHM of the main donor bound exciton peak increased from 0.6 to 2.9 meV but no change in peak position (3.472 eV) was observed in GaN when doping with Si (5×1017 cm?3). However, the intensities of the yellow band and the shallow donor–acceptor pair band increased 10 times as compared to that in the undoped GaN samples. In the case of InGaN/GaN heterostructures, a similar trend was observed when compared to the doped samples. In the multiquantum well In0.08Ga0.92N/In0.02Ga0.98N heterostructures, the activation energy of the exciton emission, found to be 18 meV, was the lowest in the samples studied. The peak at 3.02 eV related to the InGaN was strongly pronounced in the In0.08Ga0.92N/In0.02Ga0.98N multiquantum well structure. In the In0.08Ga0.92N/In0.02Ga0.98N quantum well structures, the change in peak position with variation of temperature from 15 to 300 K in PL spectra is “S”-shaped. The cause for the “S” shape, i.e., a red–blue–red shift, is discussed.  相似文献   

10.
Gallium nitride GaN thin films were deposited on Si (111) substrates using electrochemical deposition technique at 20 °C. SEM images and EDX results indicated that the growth of GaN films varies with the current density. XRD and Raman analyses showed the presence of hexagonal wurtzite and cubic zinc blende GaN phases with the crystallite size around 18-19 nm. Photoluminescence spectrum showed that the energy gaps of h-GaN/Si (111) and c-GaN/Si (111) were near 3.39 eV and 3.2 eV respectively at 300 K. Raman spectrum indicated the presence of mixed phonon modes of hexagonal and cubic GaN.  相似文献   

11.
采用射频磁控溅射在扩镓硅基上溅射Ga2O3薄膜,然后氮化反应组装GaN晶体膜,并研究氮化时间对薄膜晶体质量的影响。测试结果表明:采用两步法生长得到六方纤锌矿结构的GaN多晶膜,扩镓硅层有效的抑制了硅衬底的氮化和弛豫了GaN与Si衬底的热失配。同时显示:在相同的氮化温度下,晶粒尺寸随氮化时间的增加而增大,薄膜的晶化程度相应的得到提高。  相似文献   

12.
Room temperature polarized infrared reflectance technique is employed to study the optical properties of wurtzite InN epilayers on Si(111) grown by molecular beam expitaxy. The reflection spectra are compared to the calculated spectra generated based on the anisotropic dielectric function model. Good agreement between the measured and calculated spectra is obtained. From the fit of the experimental curve, the reststrahlen parameters at the center of Brillouin zone, the carrier concentration and mobility as well as the epilayers thicknesses are determined. The values of the carrier concentration and mobility are in good agreement with the results obtained from the Hall effects measurements.  相似文献   

13.
Stress states in GaN epilayers grown on Si (1 1 1) and c-plane sapphire, and their effects on built-in piezoelectric field induced by compressive stress in InGaN/GaN multi-quantum well (MQW) light-emitting diodes (LEDs) were investigated using the electroreflectance (ER) spectroscopic technique. Relatively large tensile stress is observed in GaN epilayers grown on Si (1 1 1), while a small compressive stress appears in the film grown on c-plane sapphire. The InGaN/GaN MQWs of LED on c-plane sapphire substrate has a higher piezoelectric field than the MQWs of LEDs on Si (1 1 1) substrate by about 1.04 MV/cm. The large tensile stress due to lattice mismatch with Si (1 1 1) substrate is regarded as external stress. The external tensile stress from the Si substrate effectively compensates for the compressive stress developed in the active region of the InGaN/GaN MQWs, thus reducing the quantum-confined Stark effect (QCSE) by attenuating the piezoelectric polarization from the InGaN layer.  相似文献   

14.
X-ray diffraction and transmission electron microscopy techniques have been used to study the dynamics of variation of the structural characteristics and deformation state in SiC, AlN, and GaN epilayers sequentially grown on a Si(111) substrate. In this system, the SiC layer has been grown by solid-phase epitaxy, while the AlN and GaN layers have been deposited by chloride-hydride vapor-phase epitaxy (HVPE) using argon as a carrier gas.  相似文献   

15.
Interaction of GaN crystal faces with chemicals is crucial to understand why various nanostructures are formed during the etching process. We have prepared GaN nanostructures by a photo-assisted electroless chemical etching method in solutions containing KOH and K2S2O8. Morphology nanostructure GaN layers grown by molecular beam epitaxy (MBE) and hydride vapor phase epitaxy (HVPE) were studied. For the GaN layers grown by MBE, the etching reaction process starts at grain boundaries and dislocation domains on the surface and inverted hexagonal pyramids are eventually formed. For the GaN layers grown by HVPE, scattered etch pits with well-defined hexagonal facets are observed after the etching process.  相似文献   

16.
Park YS  Kang TW  Taylor RA 《Nanotechnology》2008,19(47):475402
We have studied the photoluminescence properties of GaN nanorods grown on Si(111) substrates by radio-frequency plasma-assisted molecular-beam epitaxy. The hexagonal shaped nanorods with lateral average diameters from 30 to 150?nm are obtained by controlling the Ga flux with a fixed amount of nitrogen. As the diameters decrease, the main emission lines assigned as donor bound excitons are blueshifted, causing a spectral overlap of this emission line with that of the free exciton at 10?K due to the quantum size effect in the GaN nanorods. The temperature-dependent photoluminescence spectra show an abnormal behaviour with an 'S-like' shape for higher diameter nanorods. The activation energy of the free exciton for GaN?nanorods with different diameters was also evaluated.  相似文献   

17.
Reflection high-energy electron diffraction (RHEED), double-crystal X-ray rocking curve (DCRC), and photoluminescence (PL) measurements were performed to investigate the effect of thermal annealing on the structural and the optical properties of CdTe (111) epilayers grown on GaAs (100) substrates by molecular beam epitaxy (MBE) at low temperature. The results of the RHEED patterns showed that the oxidized layer on the GaAs substrate was removed in a Te atmosphere, and that the 20-Å CdTe layer was grown by three-dimensional process. When the rapid thermal annealing (RTA) was performed at 500°C for 14 s, the FWHM of the DCRC for the CdTe layer had the smallest value. After the RTA process, the luminescence intensity of the exciton remarkably increased, and the peak at 1.476 eV was dominant. As the RTA temperature increased, the luminescence intensity of the exciton peak related to neutral acceptors (A°, X) increased. The temperature dependence of the spectra showed that the (A°, X) peak originated from the recombination of the excitons bound in high-density defects. The excitation power intensity dependence of the PL spectra showed that the peaks of the transitions due to donor-acceptor pairs shifted to larger energies. These results indicate that the structural and the optical properties of the CdTe epilayers grown on GaAs (100) are improved by RTA, and that the RTA process is very useful for the growth of HgxCd1−xTe on CdTe/GaAs heterostructures.  相似文献   

18.
Au-catalyzed GaAs nanowires were grown on Si substrates by vapor-liquid-solid growth method using a molecular beam epitaxy (MBE). The MBE growth could produce controlled crystalline orientation and uniform diameter along the wire axis of the GaAs nanowires by adjusting growth conditions including growth temperature and V/III flux ratio. Growths of GaAslang001rang as well as GaAslang111rang nanowires were observed by transmission electron microscopy and scanning electron microscopy. Epitaxially grown GaAslang111rang nanowires on a Si(111) substrate were verified through x-ray diffraction out-of-plane 2thetas/omega-scans. A strong room-temperature photoluminescence (PL) was observed from the epitaxially grown GaAslang111rang nanowires on a Si(100) substrate. Results of low-temperature (10 K) PL measurements and current-sensing atomic force microscopy indicated that the GaAs nanowires on a Si substrate were unintentionally doped with Si  相似文献   

19.
We report the growth of GaN epitaxial layer on Si(001) substrate with nano-patterns prepared by dry etching facility used in integrated circuit (IC) industry. It was found that the GaN epitaxial layer prepared on nano-patterned Si(001) substrate exhibits both cubic and hexagonal phases. It was also found that threading dislocation observed from GaN prepared on nano-patterned Si(001) substrate was significantly smaller than that prepared on conventional unpatterned Si(111) substrate. Furthermore, it was found that we can reduce the tensile stress in GaN epitaxial layer by about 78% using the nano-patterned Si(001) substrate.  相似文献   

20.
We show that both the morphology and the optoelectronic properties of SiGe islands growing in the pits of periodically pre-patterned Si(001) substrates are determined by the amount of Ge deposited per unit cell of the pattern. Pit-periods (p) ranging from 300 to 900 nm were investigated, and Ge growth was performed by molecular beam epitaxy (MBE) at temperatures of 690 and 760?°C. The ordered SiGe islands show photoluminescence (PL) emission, which becomes almost completely quenched, once a critical island volume is exceeded. By atomic force and transmission electron microscope images we identify the transition from pyramid-shaped to dome-shaped islands with increasing p. Eventually, the nucleation of dislocations in the islands leads to PL quenching. Below a critical Ge coverage a narrowing and a blue shift of the PL emission is observed, as compared to islands grown on a planar reference area of the same sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号