首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
用sol-gel法制备了水合二氧化钌,进而制备了二氧化钌/活性炭复合电极,并对各种不同配比的复合电极的电化学性能和物理性能进行了实验研究。引入参数Cp,RuO2·xH2O,解释复合电极的电容特性,更好地考察了水合钌氧化物的利用率。结果表明,在二氧化钌中加入适量的活性炭,可以改善电极材料的阻抗特性,但将以降低电容量为代价,当二氧化钌含量为60%(质量分数)时,复合电极的比容量为567F/g,内阻为0.4331Ω,是一种理想的超级电容器电极材料。  相似文献   

2.
雷鑑铭  陈小梅 《半导体学报》2015,36(8):083006-5
采用溶胶-凝胶法和水热合成反应法分别制备了氧化钌和氧化锰电极材料。进而采用胶体法制备了不同配比的氧化钌/氧化锰复合电极材料。利用扫描电镜和X射线衍射仪分别对电极材料的形貌及其结构进行表征。通过循环伏安法、恒流充放电、交流阻抗谱对复合电极进行电化学性能测试。结果表明:在氧化钌中加入适量的氧化锰的有助于降低氧化钌的成本和提高氧化钌的阻抗特性,当氧化锰的含量为60wt%时,在38%的H2SO4溶液中,扫描速度为20mV/s时,复合电极的比电容为438F/g,内阻为0.304Ω,且在经过300次循环充放电后,比容量仍保持92.5%,可作为较理想的超级电容器电极材料。  相似文献   

3.
超级电容器用氧化钌及其复合材料的研究进展   总被引:1,自引:2,他引:1  
介绍了超级电容器(亦称电化学电容器)中赝电容器的工作原理和特点。对性能较好的电极材料氧化钌及其复合材料进行分类。综述了近年来其制备和应用进展,并针对氧化钌材料的高成本,提出解决方法和建议。最后对氧化钌材料的发展前景作了展望。  相似文献   

4.
在三氯化钌(RuCl3)水溶液中,采用循环伏安法在铜电极表面电沉积氧化钌(RuO2)作为超级电容器电极材料。为了提高材料的电化学性能,在电沉积液中引入了氧化石墨烯(GO)水溶液,制备出RuO2/GO复合电极。采用扫描电镜(SEM)观察两种电极的表面形貌,发现氧化钌及其复合电极经60℃干燥处理1 h后,颗粒更均匀且存在明显的多孔特征,电极材料具有良好的表面特性。电化学测试结果表明,扫描速度为0.1 V/s、工作电位窗口为1 V时,两种电极比电容分别为636.5和938 F/m2,功率密度分别为31.83和46.9 W/m2。因此,RuO2/GO复合电极具有较好的电容特性,适合用作超级电容器电极材料。  相似文献   

5.
用水热反应法分别合成了氧化钌(Ru O_2)、多壁碳纳米管(MWCNT)、还原氧化石墨烯(r GO)的二元及三元复合材料,再以此类复合材料制作了电极。采用循环伏安、交流阻抗、恒电流充放电等方法研究了其电化学性能,用扫描电子显微镜(SEM)对其形貌进行了表征。结果表明:三元复合材料能明显提高电极的比容量(562 F/g)和导电性,高于二元复合材料比容量。其中采用层层组装工艺制备的复合电极,比容量达到906 F/g,内阻0.298?。  相似文献   

6.
氧化改性Ni(OH)2的电化学电容特性研究   总被引:3,自引:1,他引:2  
为获得高比电容量电极材料,制备出氧化改性Ni(OH)2,并对样品进行了XRD和XPS分析,通过恒流充放电测试分析了氧化改性Ni(OH)2/活性炭非对称型电化学电容器的电容特性,讨论了活性炭与氧化改性Ni(OH)2质量比对比电容量的影响。结果表明,氧化改性Ni(OH)2电容器性能稳定,稳定工作电压可达1.60V;在活性炭与氧化改性Ni(OH)2质量比约为2.7时,比电容量高达93.78F/g。  相似文献   

7.
超电容器活性炭/炭黑复合电极电容特性研究   总被引:3,自引:0,他引:3  
为制备实用化的超电容器,对活性炭材料进行了表征,详细描述了活性炭/炭黑复合电极的制备工艺。通过循环伏安法和恒电流充电法,对活性炭/炭黑复合电极在水系电解液中的电容行为进行了研究。结果表明:活性炭的BET比表面积达1 654 m2/g,具有合理的孔径分布,主要在2 nm附近。添加高比表面积、高导电性纳米级炭黑制备的活性炭/炭黑复合电极具有优良的电容行为和较好的功率特性,复合电极的比容量达到102.4 F/g。此外还对孔径分布与电容的关系进行了阐述。  相似文献   

8.
碳纳米管/氧化镍复合电极超大容量离子电容器   总被引:9,自引:0,他引:9  
碳纳米管作为一种新型碳材料,具有质轻,高的有效比表面积和优良的导电性,是制备双电层电容器较为理想的电极材料。本文实验用硝酸回流处理碳纳米管,对其表面改性,通过sol-gel法在改性后的碳纳米管上沉积Ni(OH)2,经灼烧得到碳纳米管/氧化镍复合材料,制成电极装配成电容器单元。该电容器具有双电层电容和赝电容特性,其比电容量为160 F/g,频率响应特性较活性炭电极电容器有所提高,是一种极具发展潜力的储能器件。  相似文献   

9.
以杏胡壳为原料,依次采用高温炭化和表面氧化改性的方法制备活性炭电极材料;采用扫描电子显微镜(SEM)表征材料的形貌;室温下,在三电极电化学体系,以2 mol/L的KOH溶液作为电解液,通过循环伏安、恒流充放电、电化学交流阻抗和循环稳定测试分析炭电极材料的电化学性能。研究结果表明:经硝酸氧化改性后的杏胡壳活性炭的综合电化学性能得到了显著提高,在0.5 A/g电流密度下,杏胡壳活性炭质量比电容达到196 F/g。在2 A/g的电流密度下充放电循环2500次后,电容保持率达到99%,展现出优异的电化学性能。  相似文献   

10.
双电层电容器用酚醛树脂基活性炭的制备   总被引:2,自引:0,他引:2  
以酚醛树脂为原料,KOH为活化剂制备双电层电容器用高比表面积活性炭电极材料。考察了工艺因素对活性炭比电容的影响,探讨了酚醛树脂基高比表面积活性炭作双电层电容器电极的电化学特性。结果表明,在固化温度为150℃、炭化温度为700℃,ζ(碱/炭)为4,活化温度为800℃时,制得的高比表面积活性炭双电极比电容可达74.2 F/g。  相似文献   

11.
低温下(0℃)化学氧化合成了盐酸掺杂聚吡咯。分别以聚吡咯和活性炭为电极材料组装成电化学电容器。采用扫描电镜、恒流充放电、循环伏安和交流阻抗测试仪研究了混合电容器的电化学性能。结果表明:低温下合成的聚吡咯呈颗粒状堆积,粒径为100~300nm;电流密度为6×10–3A/cm2时,混合电容器在1mol/LNa2SO4电解液中比电容高达178.6F/g,100次循环后比电容为初始容量的88.4%,漏电流仅为0.16×10–3A/cm2。  相似文献   

12.
固相合成法制备了MnO2电极材料,以其为正极,活性炭(AC)电极为负极,组装了有机电解液MnO2/AC混合电容器。测试结果表明,在1 mol/L的有机电解液LiPF6/(DMC+EC)中,混合电容器的工作电压可达2.5 V,在不同的电流密度下,比容量为43.64~53.17 F/g,漏电流为0.08×10–3 A/cm2,经1 000次恒流充放电循环后,比容量衰减幅度约为8%。  相似文献   

13.
有机双电层电容器用活性炭电极的修饰   总被引:5,自引:2,他引:3  
利用石墨、炭黑、碳纳米管三种导电碳材料,对高比表面积活性炭进行掺杂修饰,制备有机电解液双电层电容器用薄膜电极。经电化学测试发现,在 1 mol/L 的 LiPF6/EC-DEC(体积比 1∶1)溶液中,经不同导电材料修饰后的活性炭电极,其单电极比容量和大电流充放电性能均有较大改善。其中,掺杂 10%(质量分数)碳纳米管的活性炭电极,在 330 mA/g 电流密度下的单电极比容量可达 81 F/g,比未掺杂活性炭电极 60 F/g 的比容量提高了 35%;电流密度从 60 mA/g 增至 330 mA/g,该电极的容量保持率为 79.4%。  相似文献   

14.
以Mn(NO3)2、活性中间相碳微球(活性MCMB)为原料,采用KBrO3氧化法,成功制备了MnO2/活性MCMB新型复合电极材料;以该材料制成电极,并以质量分数为30%的KOH溶液为电解液,组装成扣式电容器。通过XRD和SEM分析了MCMB,活性MCMB及MnO2/活性MCMB的晶相结构和表面形态;采用循环伏安、交流阻抗和恒流充放电法研究了电容器的电容性能。结果表明:以MnO2/活性MCMB复合电极制成的电容器电容性能优良。在0.5A/g电流密度下,其充放电曲线表现出典型的电容行为,初始比容量高达403.5F/g,相应能量密度为12.5Wh/kg;其循环伏安曲线关于零电流线对称,呈现为较规则的矩形;其等效串联电阻约为0.7Ω。  相似文献   

15.
碳纳米管-氢氧化镍复合电极电化学电容器   总被引:1,自引:0,他引:1  
采用催化裂解法制备了碳纳米管并进一步制备了碳纳米管薄膜电极。基于该种材料的超电容器电极比容量为36 F/g。研究了在碳纳米管薄膜基体上使用电化学方法沉积氢氧化镍的新工艺,制备出碳纳米管/氢氧化镍复合电极。伏安特性曲线以及直流充放电实验证明复合电极的单电极比容量达到63 F/g,交流阻抗谱证明复合电极具有优良的阻抗特性。  相似文献   

16.
将sol-gel法与水热法相结合制备了RuO2掺杂的V2O5干凝胶复合材料,ζ(Ru∶V)为1.99%。结构和性能分析结果表明,复合材料主要由V、O、Ru组成;V2O5粒子连接形成薄片,薄片堆积而形成层状结构的干凝胶;RuO2未形成晶态结构,弥散分布在层状结构的间隙处;RuO2的掺杂,导致V2O5晶格畸变。循环伏安法分析表明复合材料具有典型的超级电容行为,其比电容约为20.3F/g,可作为超级电容器的电极材料。  相似文献   

17.
By using Si(HIPEs) as hard, exotemplating matrices, interconnected macro‐/microporous carbon monolith‐type materials with a surface area of around 600 m2 g?1 are synthesized and shaped. The carbonaceous foams exhibit a conductivity of 20 S cm?1, addressed with excellent mechanical properties (Young's modulus of 0.2 GPa and toughness of 13 J g?1, when the carbon core is optimized). The above‐mentioned specificities, combined with the fact that the external shape and size can be easily designed on demand, are of primary importance for applications. The functionality of these carbonaceous monoliths is tested as both an electrochemical capacitor and a lithium ion negative electrode. The electrochemical capacitors' voltage–current profiles exhibit a non‐ideal rectangular response, confirming the double‐layer behavior of the carbon studied, while the charge‐discharge current profile of the electric double‐layer capacitor is directly proportional to the scan where the current response during charge and discharge exhibits high reversibility. When acting as a lithium ion negative electrode, after initial irreversibility, a good cyclability is obtained, associated with a stable capacity of 200 mA h g?1 during the first 50 cycles at a reasonable current density (C/10).  相似文献   

18.
Multifunctional carbon materials are prepared for application as an active electrode material in an electrochemical capacitor displaying both charge storage and binder properties. The synthesis of the materials involves the functionalization of high surface area Black Pearls 2000 carbon black by a covalent attachment of polyacrylic acid. The polyacrylic acid polymer is formed by atom transfer radical polymerization using 1‐(bromoethyl)benzene groups initially bonded to the carbon by spontaneous grafting from the corresponding diazonium ions. The grafting of 1‐(bromoethyl)benzene and polyacrylic acid is confirmed by thermogravimetric analysis, Fourier transform infrared spectroscopy, energy‐dispersive X‐ray spectroscopy, and nitrogen gas adsorption isotherm. The composite electrode films prepared from the modified carbon are more hydrophilic and have better wettability in an aqueous electrolyte than the one prepared with the unmodified carbon. The modified electrodes also show a higher specific capacitance (≈140 F g?1), a wider working potential window (1.5 V) and excellent specific capacitance retention upon cycling (99.9% after 5000 cycles) in an aqueous 0.65 m K2SO4 electrolyte. Moreover, a relatively high specific capacitance (≈90 F g?1) is maintained at a scan rate of 1000 mV s?1 with the polyacrylic‐acid‐modified carbon electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号