首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurofibromatosis 2 (NF2) is an uncommon, autosomal dominant disorder in which patients are predisposed to neoplastic and dysplastic lesions of Schwann cells (schwannomas and schwannosis), meningeal cells (meningiomas and meningioangiomatosis) and glial cells (gliomas and glial hamartomas). Clinical and genetic criteria that distinguish NF2 from neurofibromatosis 1 have allowed more accurate assignment of specific pathological features to NF2. The NF2 tumor suppressor gene on chromosome 22q12 encodes a widely expressed protein, named merlin, which may link the cytoskeleton and cell membrane. Germline NF2 mutations in NF2 patients and somatic NF2 mutations in sporadic schwannomas and meningiomas have different mutational spectra, but most NF2 alterations result in a truncated, inactivated merlin protein. In NF2 patients, specific mutations do not necessarily correlate with phenotypic severity, although grossly truncating alterations may result in a more severe phenotype. In schwannomas, NF2 mutations are common and may be necessary for tumorigenesis. In meningiomas, NF2 mutations occur more commonly in fibroblastic than meningothelial subtypes, and may cluster in the first half of the gene. In addition, in meningiomas, a second, non-NF2 meningioma locus is probably also involved. Future efforts in NF2 research will be directed toward elucidating the role of merlin in the normal cell and the sequelae of its inactivation in human tumors.  相似文献   

2.
ADAMs: focus on the protease domain   总被引:1,自引:0,他引:1  
HYPOTHESIS: Absent or reduced expression of schwannomin/merlin is associated with tumorigenesis of sporadic schwannomas. BACKGROUND: The neurofibromatosis type 2 (NF2) gene frequently is mutated in sporadic vestibular schwannomas. The protein product of the NF2 gene is called schwannomin or merlin. Little is known about the mutated forms of schwannomin/merlin present in schwannomas. METHODS: To investigate further the role of schwannomin/merlin in schwannoma tumorigenesis, immunoblotting experiments were performed. Antischwannomin/merlin-specific antibody that recognizes amino terminus of the protein was used to determine the expression levels of schwannomin/merlin in 16 sporadic vestibular schwannomas, 1 NF2-related vestibular schwannoma, and 5 spinal schwannomas. RESULTS: The antibody detects a protein of approximately 66 kDa in the Triton X-100-insoluble fraction of tumors. The expression of schwannomin/merlin was severely reduced, <35% of control, in 11 (50%) of 22 sporadic schwannomas and in 1 NF2-related vestibular schwannoma. The intensity of 66-kDa schwannomin/merlin band was moderately reduced, from 35-60%, in 7 (32%) of 22 schwannomas compared to the expression levels found in the human brain. Truncated forms of schwannomin/merlin were identified in three tumors with moderately reduced schwannomin/merlin. CONCLUSIONS: These results provide new evidence that inactivation of schwannomin/merlin is an important factor in tumorigenesis of sporadic schwannomas.  相似文献   

3.
OBJECTIVE: The neurofibromatosis type 2 gene is frequently mutated in sporadic meningiomas. The protein product of the neurofibromatosis type 2 gene is called schwannomin or merlin. Its expression in leptomeningeal cells from which meningiomas are derived and the characteristics of mutated forms in meningiomas, to our knowledge, have not been previously studied. METHODS: Immunoblotting and immunoprecipitation experiments with two specific antibodies were used to determine the size and subcellular distribution of schwannomin/merlin in rabbit and human brain tissue and established human leptomeningeal LTAg2B cells. Immunoblotting was used to determine the expression level of schwannomin/merlin in 14 human sporadic meningiomas. RESULTS: Both antibodies detect a protein of approximately 66 kDa, which is predominantly expressed in the Triton X-100-insoluble fraction of the brain and LTAg2B cells. The levels of schwannomin/merlin were severely reduced in eight tumors (57%) when compared with the expression levels in the human brain, LTAg2B cells, and the remaining six meningiomas. All six tumors with the normal schwannomin/merlin expression were of meningotheliomatous type. In contrast, all other histological types and one meningotheliomatous tumor with psammoma bodies were deficient in the 66-kDa schwannomin/merlin. Although nonsense mutations leading to premature stop codons are common in the neurofibromatosis type 2 gene in meningiomas, we found no evidence of truncated schwannomin/merlin forms in the tumors analyzed. CONCLUSION: The absence of complete schwannomin/merlin in almost 60% of primary sporadic meningiomas seems to be an important factor in meningioma tumorigenesis. The development of meningotheliomatous meningiomas is probably linked to alterations in other oncogenes or tumor suppressor genes.  相似文献   

4.
Neurofibromatosis type 2 (NF2) protein, also known as merlin or schwannomin, is a tumor suppressor, and NF2 is mutated in most schwannomas and meningiomas. Although these tumors are dependent on NF2, some lack detectable NF2 mutations, which indicates that alternative mechanisms exist for inactivating merlin. Here, we demonstrate cleavage of merlin by the ubiquitous protease calpain and considerable activation of the calpain system resulting in the loss of merlin expression in these tumors. Increased proteolysis of merlin by calpain in some schwannomas and meningiomas exemplifies tumorigenesis linked to the calpain-mediated proteolytic pathway.  相似文献   

5.
The NF2 tumor suppressor gene product, designated merlin, belongs to the family of molecules that links membranous protein with the cytoskeleton. We have previously shown that merlin was co-immunoprecipitated with a cellular protein, p85, in cultured cell. To analyze the alteration of merlin and associated proteins in surgical specimens, we developed a new method for biotin-labeling of whole cellular proteins. Screening of tumor tissues using our method showed that none of malignant gliomas and half of the NF2-related tumors had altered p85 and merlin. Our detection method seems useful for the screening of merlin alterations in NF2-related tumors.  相似文献   

6.
Neurofibromatosis type 2 (NF2) is an autosomal dominant disorder that predisposes to nervous system tumors. The schwannomin (also termed merlin) protein encoded by the NF2 gene shows a close relationship to the family of cytoskeleton-to-membrane proteins linkers ERM (ezrin-radixin-moesin proteins). Even though penetrance of the disease is >95% and no genetic heterogeneity has been described, point mutations in the NF2 gene have been observed in only 34-66% of the screened NF2 patients, depending on the series. In order to generate tools that would enable an exhaustive alteration screening for the NF2 gene, we have deduced its entire genomic sequence. This knowledge has provided the delineation of a mutation screening strategy which, when applied to a series of 19 NF2 patients, has revealed a high recurrence of large deletions in the gene and has raised the efficiency of mutation detection in NF2 patients to 84% of the cases in this series. The remaining three patients who express two functional NF2 alleles are all sporadic cases, an observation compatible with the presence of mosaicism for NF2 mutation.  相似文献   

7.
Vestibular schwannoma occurs both as a sporadic tumour and in the dominantly inherited familial cancer syndrome neurofibromatosis type 2 (NF2). The gene for NF2 has recently been isolated on chromosome 22, and the demonstration of inactivating germline mutations in NF2 patients and NF2 associated tumours suggests that it act as a tumour suppressor. We have investigated 85 sporadic and 2 NF2 associated vestibular schwannomas, and one vagal schwannoma for chromosome 22 allele loss and NF2 gene mutations. A further 7 vestibular schwannomas were investigated for NF2 mutations only. Chromosome 22 allele loss was detected in 34 of 87 vestibular schwannomas and in the vagal nerve schwannoma. Six exons of the NF2 gene were investigated by SSCP analysis in all 95 tumours. Somatic NF2 gene mutations were detected in 13 non-familial vestibular schwannomas and in one of the NF2 vestibular schwannomas. Seven non-familial tumours with an NF2 gene mutation also displayed a chromosome 22 allele loss. Thirteen of the mutations were predicted to produce truncation of the NF2 protein. These results suggest that somatic mutations of the NF2 tumour suppressor gene are a critical step in the pathogenesis of both familial and non-familial vestibular schwannoma and that the mechanism of tumourigenesis complies with a 'two-hit' mutation model.  相似文献   

8.
Monosomy of chromosome 22 or deletions of 22q have been described in meningiomas and astrocytic tumors, the incidence of which is increased in Type 2 neurofibromatosis. Recently, the gene for neurofibromatosis Type 2 (NF2) has been identified at Chromosome 22q12, and a tumor suppression role has been suggested. Because there have been only a few studies of the NF2 gene on central nervous system tumors other than vestibular schwannomas, we investigated the potential role of NF2 as a tumor suppressor gene in a group of sporadic meningiomas and astrocytomas. Forty-four tumors (26 meningiomas and 18 astrocytic tumors of different grades) were screened for NF2 mutations for the entire 17 exons by the polymerase chain reaction-single-strand conformation polymorphism method. In addition, 37 tumors and their respective constitutional deoxyribonucleic acid were analyzed for loss of heterozygosity of 22q alleles by four polymorphic microsatellite markers. Seven inactivating mutations were found in Exons 4, 5, 6, and 10 in 7 of 26 (27%) meningiomas, but none were found in astrocytic tumors. Altogether, 69% of meningiomas and 20% of astrocytic tumors revealed a loss of heterozygosity of 22q markers. All tumors with NF2 mutations showed concurrent loss of alleles on 22q, thus fulfilling Knudson's criteria for tumor suppressor genes in meningiomas. We conclude that inactivation of the NF2 gene is involved in the pathogenesis of a proportion of meningiomas but not in astrocytic tumors. Because many meningiomas and some astrocytic tumors had allelic loss of 22q but intact NF2, there is a possibility that other tumor suppressor genes exist on 22q and may be involved in the pathogenesis of central nervous system tumors.  相似文献   

9.
Tuberous sclerosis complex (TSC) is a dominantly inherited multisystem disorder resulting in the development of hamartomatous growths in many organs. Genetic heterogeneity has been demonstrated linking the familial cases to either TSC1 at 9q34.3, or TSC2 at 16p13.3. About two-thirds of the TSC cases are sporadic and appear to represent new mutations. While both genes are thought to account for all familial cases, with each representing approximately 50% of the mutations, the proportion of sporadic cases with mutations in TSC1 and TSC2 is yet to be determined. We have examined the entire coding sequence of the TSC2 gene in 20 familial and 20 sporadic cases and identified a total of twenty-one mutations representing 50% and 55% of familial and sporadic cases respectively. Our rate of mutation detection is significantly higher than other published reports. Twenty out of 21 mutations are novel and include 6 missense, 6 nonsense, 5 frameshifts, 2 splice alterations, a 34 bp deletion resulting in abnormal splicing, and an 18 bp deletion which maintains the reading frame. The mutations are distributed throughout the coding sequence with no specific hot spots. There is no apparent correlation between mutation type and clinical severity of the disease. Our results document that at least 50% of sporadic cases arise from mutations in the TSC2 gene. The location of the mutations described here, particularly the missense events, should be valuable for further functional analysis of this tumor suppressor protein.  相似文献   

10.
11.
Retinoblastoma is a malignant tumor of the eye that affects about one in 20,000 young children and occurs as hereditary and non-hereditary (sporadic) forms. It results from successive loss or inactivation of the two alleles of the Rb1 gene, located in 13q14. A chromosomal deletion in 13q14 is revealed by cytogenetic investigation in about 5% of affected patients. Molecular studies have confirmed that inactivation of both alleles of the Rb1 gene, even by point mutation, is required for tumorigenesis, leading to the concept of antioncogenes or tumor suppressor genes. The protein (p110RB) produced by the Rb1 gene is involved in cell cycle regulation. Absence or abnormal forms of the protein may result in deregulation of the cell cycle and subsequent cell proliferation. Association of p110RB with viral oncoproteins may be a step in tumorigenesis. Differences in penetrance and expressivity among families, could be explained by balanced insertional translocation and by defects of the Rb1 gene, which codes for a shortened Rb protein with partial oncosuppressor function. Techniques allowing analysis of Rb1 mutations can be successfully used to predict or exclude the development of retinoblastoma in newborn infants.  相似文献   

12.
Neurofibromatosis 2 (NF2) is an autosomal dominant disorder that predisposes patients to central nervous system tumors. It is caused by mutations in the NF2 tumor suppressor gene, which is located on chromosome 22q12. We studied 2 multigenerational NF2 families (three members of family 1 and the proband of the family) by gene mutation analysis and clinical assessment. One member of family 1 had a 169 C-->T point mutation at codon 57 of exon 2 and had a severe phenotype. His father had a silent 1113 C-->T point mutation at codon 371 of exon 11 and had a normal phenotype. The proband of family 2 had a deletion at nucleotide 720 G (codon 240) of exon 8. This led to a frameshift and termination at codon 250, and a severe NF2 phenotype. Our results indicate that clinical abnormalities can be present in carriers. Nonsense and frameshift mutations in the NF2 tumor suppressor gene are associated with phenotypes. The clinical abnormalities can develop at a young age.  相似文献   

13.
Recent knowledge about biological role of tumor suppressor genes and their products: RB1, p53, WT1, DCC, APC/FAP, NF1, NF2, VHL, MCC and MTS1 is presented. The main approaches of these agents as physiological regulators of cell growth and proliferation are discussed. Views on the tumor suppressor genes involvement in the development of inherited and sporadic forms of cancer have been reviewed.  相似文献   

14.
We have previously described a patient with chronic myelomonocytic leukemia who exhibited a mutation (del-10:-8) in the splice-acceptor region in front of the FLR exon of the NF1 tumor suppressor gene. In order to evaluate whether this mutation indeed affects correct splicing of this exon we used an exon trap approach. Our data unequivocally prove the functional relevance of this NF1 mutation. Exon trapping thus represents an attractive strategy to study the consequences of putative splice-site mutations if RNA samples are not available.  相似文献   

15.
Multiple endocrine neoplasia type 1 (MEN1) consists of benign, and sometimes malignant, tumors (often multiple in a tissue) of the parathyroids, enteropancreatic neuroendocrine system, anterior pituitary, and other tissues. Skin angiofibromas and skin collagenomas are common. Typically, MEN1 tumors begin two decades earlier than sporadic tumors. Because of tumor multiplicity and the tendency for postoperative tumor recurrence, specialized methods have been developed for preoperative and intraoperative localization of many MEN1-associated tumors. The MEN1 gene was recently isolated by positional cloning. This strategy progressively narrows the size of the candidate MEN1 gene interval on the chromosome and then finds and tests many or, if needed, all genes within that interval. The MEN1 gene was finally identified because it was the one gene that contained mutations in most DNAs from a test panel of MEN1 cases. It has been suggested that MEN1, like many hereditary cancer syndromes, is caused by mutation in a tumor suppressor gene that contributes to neoplasia when both gene copies in a tumor precursor cell have been sequentially inactivated ("two-hit" oncogenesis mechanism). Germline MEN1 mutations were found in most families with MEN1 and in most cases of sporadic MEN1. In addition, the MEN1 gene was the gene most likely to show acquired mutation in several sporadic or nonhereditary tumors-parathyroid adenomas, gastrinomas, insulinomas, and bronchial carcinoids. Most germline or acquired MEN1 mutations predicted truncation (and thus likely inactivation) of the encoded protein, supporting expectations for the "first hit" to a tumor suppressor gene. Testing for MEN1 germline mutation is possible in a research setting. Candidates for MEN1 mutation testing include patients with MEN1 or its phenocopies and first-degree relatives of persons with MEN1.  相似文献   

16.
Schwannomas are peripheral nerve tumors that typically have mutations in the NF2 tumor suppressor gene. We compared cultured schwannoma cells with Schwann cells from normal human peripheral nerves (NHSC). Both cell types expressed specific antigenic markers, interacted with neurons, and proliferated in response to glial growth factor, confirming their identity as Schwann cells. Schwannoma cells frequently had elevated basal proliferation compared to NHSC. Schwannoma cells also showed spread areas 5-7-fold greater than NHSC, aberrant membrane ruffling and numerous, frequently disorganized stress fibers. Dominant negative Rac inhibited schwannoma cell ruffling but had no apparent effect on NHSC. Schwannoma cell stress fibers were inhibited by C3 transferase, tyrphostin A25, or dominant negative RhoA. These data suggest that the Rho and Rac pathways are abnormally activated in schwannoma cells. Levels of ezrin and moesin, proteins related to the NF2 gene product, merlin, were unchanged in schwannoma cells compared to NHSC. Our findings demonstrate for the first time that cell proliferation and actin organization are aberrant in schwannoma cells. Because NF2 is mutant in most or all human schwannomas, we postulate that loss of NF2 contributes to the cell growth and cytoskeletal dysfunction reported here.  相似文献   

17.
Epithelioid sarcomas are soft tissue tumors with an indolent, but potentially aggressive, clinical behavior. Distinction from other benign and malignant entities may be a diagnostic dilemma. In this study, we evaluate the presence of loss of heterozygosity (LOH) of chromosome 22q in tumor DNA from 13 epithelioid sarcomas, four epithelioid angiosarcomas, and two epithelioid hemangioendotheliomas, and investigate its possible role in diagnosis. LOH was detected in 6 of 10 (60%) of the informative epithelioid sarcomas. No allele loss was detected in the informative vascular tumors, three angiosarcomas, and two hemangioendotheliomas. Chromosome 22q carries the locus of a tumor suppressor gene, the neurofibromatosis 2 (NF2) gene, which has been shown to be lost or mutated in some NF2-related tumors, sporadic meningiomas, and vestibular schwannomas, as well as a few other tumors. Our data suggest that a region of chromosome 22q may be the locus of a tumor suppressor gene involved in the tumorigenesis of these neoplasms. Genetic alterations of yet-unknown tumor suppressor genes in this region, or even the NF2 tumor suppressor gene, may play a role in epithelioid sarcomas tumorigenesis. The fact that LOH was only detected in epithelioid sarcomas and not in the vascular tumors studied suggests a possible role for this marker in diagnosis.  相似文献   

18.
Anterior pituitary tumors arise sporadically, and also as part of the inherited multiple endocrine neoplasia type 1 (MEN 1) syndrome. To investigate the role of the recently isolated men1 gene in sporadic pituitary tumorigenesis, the complete coding sequence was screened for mutations in 45 sporadic anterior pituitary tumors, including 14 hormone-secreting tumors and 31 nonsecreting tumors, by dideoxy fingerprinting and sequence analysis. No pathogenic sequence changes were found in the men1 coding region. The men1 gene was expressed in 43 of these tumors with sufficient RNA, including one tumor with loss of heterozygosity (LOH) for several polymorphic markers on chromosomal region 11q13. Furthermore, both alleles were expressed in 19 tumors in which the constitutional DNA was heterozygous for intragenic polymorphisms. Thus, inactivation of the men1 tumor suppressor gene, by mutation or by imprinting, does not appear to play a prominent role in sporadic pituitary adenoma pathogenesis.  相似文献   

19.
Neurological tumours are common neoplasms of both adults and children. Recent studies have begun to delineate the genetic abnormalities that underlie such tumours, and have implicated two classes of genes, oncogenes and tumour suppressor genes. Most investigations have focused on those astrocytomas that affect the cerebral hemispheres of adults, since these are the most common and malignant brain tumours. The high-grade astrocytomas that affect adults, such as glioblastoma multiforme, often have amplification of the epidermal growth factor receptor (EGFR) oncogene and loss of a variety of chromosomal loci that probably harbour tumour suppressor genes. Of the various tumour suppressor gene loci, the p53 gene on chromosome 17p has been studied most closely and has been shown to be mutated in both low- and high-grade astrocytomas. These genetic alterations may provide a means for subdividing astrocytomas into diagnostic categories. For instance, p53 gene mutations occur more commonly in glioblastomas from young adults and women, while EGFR gene amplification is more common in glioblastomas from older adults and men. For the other primary CNS tumours, genetic studies remain in their infancy. The neurocutaneous syndromes, such as neurofibromatosis types 1 and 2, have provided unique insights into neurological oncogenesis. The NF1 gene on chromosomes 17q and its product, neurofibromin, may be important in the formation of neurofibrosarcomas, while the NF2 gene on chromosome 22q and its product, merlin, are probably involved in the formation of schwannomas and other nervous system tumours. The further characterization of these and other neurological tumour genes will undoubtedly illuminate many other areas in neurooncology.  相似文献   

20.
T-cell prolymphocytic leukemia (T-PLL) is a rare form of mature leukemia that occurs both in adults as a sporadic disease and in younger patients suffering an hereditary condition, ataxia telangiectasia (AT). The ATM gene, located in the 11q22-23 chromosomal region, is consistently mutated in AT patients. The strong predisposition of AT patients to develop T-PLL and the high frequency of T-cell leukemias/lymphomas observed in atm-deficient mice, together with the known functions of the ATM protein, led us to evaluate the ATM gene as a potential tumor suppressor gene involved in T-PLL. Paired leukemic and nonleukemic cells were obtained from a series of 15 patients suffering sporadic T-PLLs, allowing loss of heterozygosity (LOH) analysis. LOH of the 11q22-23 region was detected in 10 of these 15 cases (67%). The minimal deleted region was defined as an approximately 2.5 Mb interval that contained the ATM gene. No ATM rearrangement or biallelic deletion was detected by Southern blotting in the T-PLL series. However, in five T-PLLs with LOH of the 11q22-23 region, Western blot analysis showed either undetectable (3 cases) or decreased levels (1 case) of ATM protein, whereas ATM was present at high levels in cases without LOH. The protein truncation test (PTT) was then used to search for mutations in the ATM gene. Four mutations (1 nonsense, 2 aberrant splicings, and 1 missense) were detected in patients with LOH and none in patients without LOH of the region. The acquired character of these ATM mutations was demonstrated in three patients. Altogether, allelic ATM inactivations by large deletions or mutations were found in approximately two thirds of T-PLL. ATM is thus a tumor suppressor gene whose inactivation is a key event in the development of T-cell prolymphocytic leukemias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号