首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
The expression of glutamate receptor/subunit mRNAs was examined 3 weeks after discontinuing 1 week of daily injections of saline or cocaine. The level of mRNA for GluR1-4, NMDAR1, and mGluR5 receptors was measured with in situ hybridization and RT-PCR. In nucleus accumbens, acute cocaine treatment significantly reduced the mRNA level for GluR3, GluR4, and NMDAR1 subunits, whereas repeated cocaine reduced the level for GluR3 mRNA. Acute cocaine treatment also reduced the NMDAR1 mRNA level in dorsolateral striatum and ventral tegmental area. In prefrontal cortex, repeated cocaine treatment significantly increased the level of GluR2 mRNA. The GluR2 mRNA level was not changed by acute or repeated cocaine in any other brain regions examined. Repeated cocaine treatment also significantly increased mGluR5 mRNA levels in nucleus accumbens shell and dorsolateral striatum. Functional properties of the ionotropic glutamate receptors are determined by subunit composition. In addition, metabotropic glutamate receptors can modulate synaptic transmission and the response to stimulation of ionotropic receptors. Thus, the observed changes in levels of AMPA and NMDA receptor subunits and the mGluR5 metabotropic receptor may alter excitatory neurotransmission in the mesocorticolimbic dopamine system, which could play a significant role in the enduring biochemical and behavioral effects of cocaine.  相似文献   

3.
Anatomical and electrophysiological studies have indicated that a reciprocal projection from the ventral pallidum back to the nucleus accumbens exists and has functional relevance. In this study, the topographical projection from the ventral pallidum to the nucleus accumbens was examined by using retrograde tracing with fluoro-gold iontophoresed in subcompartments of the nucleus accumbens in rats combined with either in situ hybridization for glutamic acid decarboxylase and preproenkephalin mRNA or substance P immunoreactivity. Deposits made into the medial nucleus accumbens preferentially labeled neurons in the medial ventral pallidum, while deposits into the dorsolateral nucleus accumbens, at or lateral to the anterior commissure, labeled primarily cells in the dorsal and lateral ventral pallidum. A mediolateral to rostrocaudal topography was also observed, with the medial deposits preferentially labeling cells in rostral ventral pallidum and the lateral deposits resulting in retrogradely labeled cells in the ventral pallidum below the crossing of the posterior anterior commissure (subcommissural) as well as below the globus pallidus (sublenticular). The majority of cells retrogradely labeled with fluoro-gold were double-labeled for glutamic acid decarboxylase mRNA. In contrast, very few retrogradely labeled neurons in the ventral pallidum were double labeled for mRNA for preproenkephalin. These data demonstrate a topographically organized projection from the ventral pallidum to the nucleus accumbens that is primarily gamma-aminobutyric acid (GABA)-ergic and reciprocal to the GABAergic projection from the nucleus accumbens to the ventral pallidum.  相似文献   

4.
The distribution of a metabotropic glutamate receptor mGluR2 in the central nervous system was immunohistochemically examined in the rat and mouse with a monoclonal antibody raised against an N-terminal sequence of rat mGluR2 (amino acid residues 87-134). Neuronal cell bodies with mGluR2-like immunoreactivity (mGluR2-LI) were clearly shown in the horizontal cells of Cajal in the cerebral cortex, neurons in the triangular septal nucleus and medial mammillary nucleus, Golgi cells and the unipolar brush cells in the cerebellar cortex, and Golgi-like and unipolar brush-like cells in the cochlear nucleus. Neuropil was intensely immunostained in the accessory olfactory bulb, bed nucleus of the accessory olfactory tract, neocortex, cingulate cortex, retrosplenial cortex, subicular and entorhinal cortices, stratum lacunosum-moleculare of CA1 and CA3, molecular layer of the dentate gyrus, periamygdaloid cortex, basolateral amygdaloid nucleus, bed nucleus of the anterior commissure, caudate-putamen, accumbens nucleus, thalamic reticular nucleus, anteroventral and paraventricular thalamic nuclei, granular layer of the cerebellar cortex, anterior and ventral tegmental nuclei, granular layer of the cochlear nucleus, and parvicellular part of the lateral reticular nucleus. Many axons in the white matter and fiber bundles were also immunostained. No glial cells with mGluR2-LI were found. No particular species differences were found in the distribution pattern of mGluR2-LI between the rat and mouse. The results indicate that mGluR2 is expressed not only in somato-dendritic domain, but also in axonal domain of excitatory and inhibitory neurons.  相似文献   

5.
Systemic nicotine enhances burst firing of dopamine neurons in the ventral tegmental area and dopamine release in the nucleus accumbens, mainly via stimulation of nicotinic acetylcholine receptors in the ventral tegmental area. Given that both the neuronal activity of mesolimbic dopamine neurons and terminal dopamine release are regulated by excitatory amino acid inputs to the ventral tegmental area and that nicotine facilitates glutamatergic transmission in brain, we investigated the putative role of ionotropic glutamate receptors within the ventral tegmental area for the effects of nicotine on dopamine release in the nucleus accumbens using microdialysis, with one probe implanted in the ventral tegmental area for drug application and another in the ipsilateral nucleus accumbens for measuring dopamine, in awake rats. Systemic nicotine (0.5 mg/kg, s.c.) and infusion of nicotine (1.0 mM) into the ventral tegmental area increased dopamine output in the nucleus accumbens. Intrategmental infusion of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (0.1 mM) or N-methyl-D-aspartate (0.3 mM) increased accumbal dopamine release; these effects were antagonized by concomitant infusion of a selective antagonist at N-methyl-D-aspartate receptors, 2-amino-5-phosphonopentanoic acid (0.3 mM), and non-N-methyl-D-aspartate receptors, 6-cyano-7-nitroquinoxaline-2,3-dione (0.3 mM), respectively. Infusion of either antagonist (0.3 or 1.0 mM) into the ventral tegmental area did not affect basal dopamine levels, whereas infusion of 2-amino-5-phosphonopentanoic acid, but not 6-cyano-7-nitroquinoxaline-2,3-dione, starting 40 min before nicotine injection dose-dependently attenuated the nicotine-induced increase in accumbal dopamine release. Concurrent intrategmental infusion of 2-amino-5-phosphonopentanoic acid and nicotine decreased nicotine-induced dopamine release in the nucleus accumbens. These results indicate that the stimulatory action of nicotine on the mesolimbic dopamine system is to a considerable extent mediated via stimulation of N-methyl-D-aspartate receptors within the ventral tegmental area.  相似文献   

6.
The goal of this study was to investigate the functional organization of the subpallidal-->accumbens direct and indirect feedback loops by both anatomical and electrophysiological methods. The results of the dextran-conjugated rhodamine injections into the subpallidal area has shown three distinct projections: (1) a substantial pathway from the subpallidal area to the ventral tegmental area, (2) a more diffuse rostral projection from the subpallidal area to the core area of the nucleus accumbens, and (3) a sparse pathway projecting rostrodorsally from the subpallidal area toward the thalamic regions. Electrical or chemical stimulation of the subpallidal region, which was studied by the axonal tracer, evoked inhibitory responses in the majority (60 and 80%, respectively) of the accumbens and ventral tegmental area neurons in a standard extracellular recording study. Less than 1/3 of the accumbens or ventral tegmental area cells showed an increase in the mean firing rate. The majority (77.5%) of all responded neurons had a latency of less than 10 ms. Furthermore, injection of glutamate into the subpallidal area not only altered the firing pattern of the accumbens neurons, but also attenuated their excitatory responses elicited by the electrical stimulation of the ventral subiculum. Our results indicate that the subpallidal area plays a predominantly inhibitory role in the ventral tegmental area-accumbens-subpallidal circuitry, presumably by its GABAergic projections, and may also modulate subicular input into the nucleus accumbens.  相似文献   

7.
The purpose of the present study was to examine whether zinc-positive and zinc-negative hippocampal neurons in rats differed with respect to their projections to the septum. By combining retrograde axonal transport of the fluorescent tracer Fluoro-Gold with histochemical demonstration of zinc selenide complexes in zinc-containing neurons after intraperitoneal injection of sodium selenite, we were able to visualize the distribution of retrogradely Fluoro-Gold labeled neurons and zinc-containing neurons in the same sections. After unilateral injection of Fluoro-Gold into the rat septum a few retrogradely labeled cells were observed in layer IV of the ipsilateral medial entorhinal area, and numerous labeled cells were observed mainly in the superficial layers of the ipsilateral subicular areas and throughout the CA1 and CA3 pyramidal cell layers, as well as in the contralateral CA3 pyramidal cell layer. Zinc-containing neurons were observed in layers IV-VI of the medial entorhinal area, layers II and III of the parasubiculum, layers II, III and V of presubiculum, and in the superficial CA1 and deep CA3 pyramidal cell layers. Cells double-labeled with Fluoro-Gold and zinc selenide complexes were primarily located in distal (relative to the area dentata) parts of the superficial CA1 pyramidal cell layer and distal parts of the deep CA3 pyramidal cell layer and in layers II and III of presubiculum. Only a very few double-labeled cells were seen in the contralateral CA3. The result demonstrates that the hippocampo-septal projection of rats is a mixture of zinc-positive and zinc-negative fibers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Motor activity elicited pharmacologically from the nucleus accumbens by the mu-opioid receptor agonist D-Ala-Tyr-Gly-NMePhe-Gly-OH (DAMGO) is augmented in rats sustaining dopamine depletions. GABAergic projections from the nucleus accumbens to ventral pallidum and ventral tegmental area (VTA) are involved because stimulation of GABAB receptors in the VTA (by baclofen) or GABAA receptors in the ventral pallidum (by muscimol) inhibit the motor response induced by the microinjection of DAMGO into the nucleus accumbens. The present study was done to determine which of these projections is mediating the augmented DAMGO-induced motor activity that follows 6-hydroxydopamine lesions of the nucleus accumbens. The inhibition of DAMGO-induced activation by pallidal injections of muscimol was markedly attenuated in lesioned animals, whereas the inhibition by VTA injections with baclofen was greatly enhanced. A similar switch in emphasis from pallidal to mesencephalic efferents was not observed for dopamine-induced motor activity, because muscimol microinjections inhibited the response elicited by dopamine microinjection into the nucleus accumbens in all subjects. The stimulation of mu-opioid receptors in the ventral pallidum also elicits motor activation, and this is blocked by baclofen microinjection into the VTA. However, after dopamine depletion in the nucleus accumbens, baclofen in the VTA was ineffective in blocking the motor response by DAMGO in the ventral pallidum. These data reveal that dopamine depletion in the nucleus accumbens produces a lesion-induced plasticity that alters the effect of mu-opioid receptor stimulation on efferent projections from the nucleus accumbens and ventral pallidum.  相似文献   

9.
The distribution of ionotropic glutamate receptor subunits GluR1 and NMDAR1, and the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) was studied by immunocytochemistry, in the monkey amygdala. The basal and lateral nuclei contained a higher density of GluR1-positive neurons than the corticomedial and central groups of nuclei, and the accessory basal nucleus. A higher density of NMDAR1 immunopositive cell bodies was also present in the lateral nucleus, compared to the other nuclei of the amygdala. Large multipolar or fusiform projection neurons, and not small local circuit neurons were GluR1 or NMDAR1-positive, and less than 0.5% of the GluR1-positive cells were double labelled for GABA. In contrast, almost all GluR1-positive neurons were also labelled for NMDAR1 in double labelled sections and vice versa. Electron microscopy also showed that GluR1- and NMDAR1-positive cells had distinctive ultrastructural features, compared with GABAergic cells, ant that there was very rare colocalisation, between GABA, and GluR1 or NMDAR1-positive cell bodies or dendrites. It is likely that not all projection neurons were GluR1 or NMDAR1-positive, however, since GluR1 or NMDAR1-positive neurons were only 2-3 times as common as GABAergic cells, whereas it has been estimated that projection neurons outnumber GABAergic local circuit neurons by 4 to 1 (McDONALD and AUGUSTINE, 1993; PITKANEN and AMARAL, 1994).  相似文献   

10.
Localization of preganglionic neurons of the accessory ciliary ganglion (ACG), including ectopic intraocular ganglion cells, was investigated in the cat with the aid of horseradish peroxidase (HRP) and HRP-conjugated wheat germ agglutinin (WGA-HRP) methods. When HRP or WGA-HRP was injected into the anterior and posterior chambers of the eye, no retrogradely labeled cells were found in the visceral oculomotor nuclei, although most neurons of the ACG and the main ciliary ganglion (CG) were intensely labeled. When a microsyringe needle was inserted into the ciliary body, the tracer diffused into the suprachoroid lamina and the intraocular ganglion cells, and a small number of labeled neurons appeared in the midplane between each side of the somatic oculomotor nuclei. After injection into the ACG, many labeled neurons were observed in the anteromedian nucleus, Edinger-Westphal nucleus, and midplane between the somatic oculomotor nuclei, their ventral continuations of the ventral tegmental area, and the periaqueductal gray. HRP/WGA-HRP injection into the CG labeled cells in all these areas and in the lateral border zones of the anteromedian, Edinger-Westphal and somatic oculomotor nuclei, and their ventral continuations of the ventral tegmental area. These findings indicate that the visceral oculomotor neurons which project to the ACG tend to be located more medially than those to the CG.  相似文献   

11.
The documented trophic actions of the neurotrophins brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5) upon ventral mesencephalic dopamine neurons in vitro and in vivo are presumed to be mediated through interactions with their high-affinity receptors TrkB (for BDNF and NT-4/5) and TrkC (for NT-3). Although both neurotrophin receptor mRNAs have been detected within the rat ventral midbrain, their specific association with mesencephalic dopaminergic cell bodies remains to be elucidated. The present study was performed to determine the precise organization of trkB and trkC mRNAs within rat ventral midbrain and to discern whether the neurotrophin receptor mRNAs are expressed specifically by dopaminergic neurons. In situ hybridization with isotopically labeled cRNA probes showed that trkB and trkC mRNAs were expressed in all mesencephalic dopamine cell groups, including all subdivisions of the substantia nigra and ventral tegmental area, and in the retrorubral field, rostral and caudal linear raphe nuclei, interfascicular nucleus, and supramammillary region. Combined isotopic/nonisotopic double-labeling in situ hybridization demonstrated that virtually all of the tyrosine hydroxylase (the catecholamine biosynthetic enzyme) mRNA-containing neurons in the ventral midbrain also expressed trkB or trkC mRNAs. Additional perikarya within these regions expressed the neurotrophin receptor mRNAs but were not dopaminergic. The present results demonstrate that essentially all mesencephalic dopaminergic neurons synthesize the neurotrophin receptors TrkB and TrkC and thus exhibit the capacity to respond directly to BDNF and NT-3 in the adult midbrain in vivo. Moreover, because BDNF and NT-3 are produced locally by subpopulations of the dopaminergic cells, the present data support the notion that the neurotrophins can influence the dopaminergic neurons through autocrine or paracrine mechanisms.  相似文献   

12.
The aim of the present study was to determine the afferent connections of the nucleus accumbens in snakes, in particular its catecholaminergic input. For that purpose, in vitro and in vivo applications of retrograde tracers in the nucleus accumbens of Elaphe guttata were combined with tyrosine hydroxylase (TH) immunohistochemistry. Both techniques revealed telencephalic inputs to the nucleus accumbens originating from the diagonal band of Broca, ventral pallidum, amygdaloid complex, and dorsal cortex. Major diencephalic inputs arise from the dorsomedial thalamic nucleus and the hypothalamus. In the brainstem, a few retrogradely labeled cells were observed in the raphe nucleus and the locus coeruleus. Considerably more cells were found in the midbrain tegmentum. Within the confines of the locus coeruleus and, in particular, the midbrain tegmentum, retrogradely labeled cells stained also for TH suggesting that those areas constitute the major catecholaminergic input to the nucleus accumbens of snakes. The experimental approach used in the present study, in particular the in vitro technique, seems to be very suited for studying the development of basal ganglia organization of reptiles in the near future.  相似文献   

13.
The associations of glutamate receptor subunits (NMDAR1, AMPA GluR1 and GluR2/3) and spinothalamic tract neurons in the rat lumbar spinal cord dorsal horn were investigated. Staining for NMDAR1 and AMPA GluR1 and GluR2/3 receptor subunits was observed throughout the spinothalamic tract soma and dendrites, particularly in association with the rough endoplasmic reticulum and some postsynaptic membrane sites. Immunostaining for NMDAR1 and AMPA GluR2/3 was also noted in presynaptic membrane sites. Localization of both NMDA and AMPA glutamate receptor subunits in association with spinothalamic tract neurons provides anatomical evidence in support of the various interactions reported for glutamate receptors in nociception. Presynaptic localization of the AMPA GluR2/3 receptor subunit suggests that spinothalamic tract cells may also be affected presynaptically by AMPA glutamate receptor interactions.  相似文献   

14.
The nucleus accumbens (NAcc) can be subdivided into 'core' and 'shell' based on anatomical connections and histochemical markers. Previous studies have demonstrated dopamine-beta-hydroxylase immunoreactive (DBH-ir) fibers in the NAcc shell, but the source of these noradrenergic (NE) afferents has not been determined. Therefore, we have investigated in detail the anatomy of NE afferents to this subregion. Dual immunohistochemistry for DBH and substance P demonstrated numerous DBH-ir fibers in the caudal NAcc shell. Neurons projecting to the NAcc were identified with Fluoro-Gold (FG) or cholera toxin B (CTb) retrograde tracing and tyrosine hydroxylase (TH) immunohistochemistry. Single- and double-labeled neurons were observed in the A2 and A1 NE cell groups following FG injections into the caudal NAcc shell. Numerous FG and CTb single-labeled neurons were found in the rostral locus coeruleus (LC), subcoeruleus and pericoerulear dendritic region, with an occasional double-labeled neuron in the LC. Few labeled neurons were seen in the brainstem after FG injections into the NAcc core, consistent with the lack of DBH-ir in this subterritory. To confirm these results, injections of Phaseolus vulgaris leucoagglutinin or biotinylated dextran amine were made into the LC or nucleus tractus solitarius (NTS). Virtually no labeled fibers were observed in the NAcc following injections into central LC. However, fibers were observed in the NAcc shell after injections in the NTS. These results indicate that the primary source(s) of NE afferents to the NAcc shell is the A2 region of the NTS, with lesser contributions from A1 and LC.  相似文献   

15.
mGluR1alpha is a metabotropic glutamate receptor involved in synaptic modifiability. A differential expression in specific neuronal types could reflect their different connections and response properties in central auditory processing. Using in situ hybridization and immunohistochemistry, we studied mGluR1alpha receptor expression throughout the cochlear nucleus. Robust labeling occurred in the dorsal cochlear nucleus and small cell shell, with less in the ventral cochlear nucleus. Among the most intensely labeled were the granule cells of the small cell shell. In the dorsal cochlear nucleus, most cell types expressed message and receptor protein, except granule cells. High levels of receptor were expressed by corn cells and cartwheel cells. The terminal dendrites and synaptic spines of cartwheel and fusiform cells contained receptor protein in the molecular layer, where they could synapse with parallel fibers. Fusiform dendrites also expressed mRNA for mGluR1alpha. The basal dendrites of fusiform cells contained receptor protein in the region where they receive cochlear nerve synapses. Immunostaining of terminal axons was prominent in the molecular layer and the small cell shell, where they were associated with synaptic nests, structures thought to provide long-term changes in excitability. Differential expression levels may reflect different functional requirements of specific cell types, including inhibitory interneurons, like corn cells and cartwheel cells, and excitatory interneurons, like granule cells in the small cell shell, which may participate in local circuits involved in modulatory or gating functions, such as stimulus enhancement or suppression. In presynaptic axons, mGluR1alpha may relate to the long-term signaling requirements of their modulatory functions.  相似文献   

16.
In these experiments, induction of the immediate early gene c-fos following excitation of striatal neurons has been used to investigate the organization of the ventral and dorsal striatopallidal systems and the relationship between striatal neurons and cholinergic neurons of the nucleus basalis magnocellularis (of Meynert, nbM). The results demonstrate that FOS immunoreactivity (ir) can be detected in ventral and dorsal striatal neurons following infusions of the non-N-methyl-D-aspartic acid (NMDA) glutamate receptor agonist alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA). This activation and increased expression of FOS in striatal neurons was itself associated with the sustained appearance of FOS-ir in neurons of the ipsilateral ventral and dorsal pallidum, subthalamic nucleus and some thalamic nuclei. Infusions of AMPA into the ventral striatum (VS), but not the dorsal striatum (DS), also resulted in the appearance of FOS-ir in a proportion (17%) of the cholinergic neurons of the nbM. By combining the retrograde transport of Fluoro-Gold with FOS immunocytochemistry, it was also possible to demonstrate that approximately 46% and 58% of the pallidal neurons containing FOS-ir after infusions of AMPA into the VS or DS, respectively, directly project to the subthalamic nucleus. Taken together, these observations suggest that visualizing the protein product of transsynaptic c-fos induction provides an effective way to study the topographic and transsynaptic, within-system consequences of striatal activation.  相似文献   

17.
Glutamate (Glu) released by olfactory nerve axons acts on postsynaptic ionotropic and metabotropic glutamate receptors expressed by principal neurones and interneurones of the olfactory bulb (OB). Using ZnSO4 lesioning of the rat olfactory mucosa and semiquantitative RT-PCR, we examined the effect of removal of the glutamatergic input to the OB on the expression of mGluR1a, mGluR1b and GluR1 mRNAs. Two days after lesioning, mGluR1a mRNA levels in OB increased by 45%. At this time, the expression of tyrosine hydroxylase (TH) mRNA, which is strictly dependent on olfactory nerve input, was still unchanged. In contrast, 16 days after lesioning, deafferented OB exhibited a decrease in both mGluR1a (-30%) and TH (-40%) mRNAs. GluR1 and mGluR1b mRNA levels were not affected at either time point. These results suggest that alterations in glutamatergic input to OB selectively modulate the expression of the mGluR1 splicing form possessing a longer C-terminal domain.  相似文献   

18.
Two-color immunofluorescence histochemistry and immunohistochemistry in combination with retrograde tract-tracing techniques were used to examine the relationship of alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA)-selective glutamate receptor subunits (GluR1, GluR2/3/4c and GluR4) to identified populations of striatal projection neurons and interneurons. The majority of striatonigral and striatopallidal neurons were double-labeled for GluR2/3/4c. These findings were confirmed using calbindin to label matrix projection neurons. In contrast, immunostaining of the GluR1 subunit was not observed to co-localize with any striatal projection neurons. Striatal interneurons immunostained for parvalbumin were also labeled by antibodies directed against the GluR1 subunit. Approximately 50% of parvalbumin neurons also contained GluR2/3/4c. Somatostatin immunoreactivity did not co-localize with either the GluR1 or GluR2/3/4c subunits. GluR4-immunoreactive neurons were not observed in striatum. This study demonstrates that AMPA-selective glutamate receptors are differentially localized on subpopulations of striatal neurons and interneurons. These findings suggest that discrete striatal neuron populations may express different AMPA receptor subunit combinations which may account for their functional specificity.  相似文献   

19.
20.
The substantia nigra (SN) has long been known as an important source of afferents to the pedunculopontine tegmental nucleus (PPN). However, it has not been established which of the chemospecific cell populations receive this synaptic input. We sought to address this issue by a correlative light and electron microscopic approach that combines anterograde tracing of nigral efferents with pre-embedding choline acetyltransferase (ChAT) and/or glutamate (Glu) immunohistochemistry. Following large bilateral injections of Phaseolus vulgaris-leucoagglutinin (PHA-L) in the SN, the labeled nigrotegmental fibers were concentrated in a small area of the mesopontine tegmentum which contained very few ChAT-immunoreactive (ChAT-ir) cell bodies. However, strands of fine varicose fibers penetrated to adjacent regions of the PPN which harbored numerous cholinergic perikarya. The anterogradely labeled boutons were often seen in the proximity of ChAT-ir perikarya and dendrites, but the majority (82-93%) established symmetric synaptic junctions with noncholinergic profiles. In the pars dissipata of the PPN (PPNd), one-third of the labeled terminals synapsed onto noncholinergic perikarya and primary dendrites, while in the pars compacta of the PPN (PPNc) axosomatic synapses were rare. The possibility that the perikarya receiving a rich synaptic input from the SN are glutamatergic was tested in experiments combining anterograde transport of biotinylated tracers biocytin and dextran-amine (BDA) with glutamate immunohistochemistry. In double-labeled sections, Glu-ir perikarya within the terminal plexus of nigrotegmental fibers were surrounded by synaptic terminals. The PPNd also contained retrogradely BDA-labeled neurons which were contacted by anterogradely labeled terminals. These results indicate that although a small subpopulation of cholinergic neurons in the mesopontine tegmentum receive direct synaptic input from the SN, the primary target of nigrotegmental fibers are glutamatergic cells in the PPNd. Our results also provide ultrastructural evidence that some nigrotegmental fibers innervate pedunculonigral neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号