首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
无线传感器网络地理路由协议要求节点根据少量本地路由信息将数据分组传输路由到目标节点。为了消除路由环,地理路由算法通常需要将网络拓扑平面化。然而现有的平面化算法要么假设节点的通信半径是一固定值,在实际应用中不适用;要么对每一条链路都进行检测是否有交叉链路,路由维护代价很高。针对以上问题,提出一种具有高可靠性和低维护成本的地理路由协议RPR(region partitioning-based routing),其基本思想是将网络划分为规则多边形区域,并在贪心路由失败时将多边形区域内的所有节点看作一个虚拟节点进行周边路由。多边形区域间通信能够降低平均路由路径长度,从而提高了路由的可靠性。基于区域划分的网络平面化策略不需要检测和删除相交链路,因此减少了路由维护开销。模拟实验结果显示,RPR协议比现有方法的平均路由路径长度更短,路由维护开销更低。  相似文献   

2.
研究了AODV路由协议,分析了多路径路由实现机制,提出了一种可应用于无线多媒体传感器网络的能量均衡多路径AODV路由协议。该协议建立从源节点到目的节点的多条路径,在路径的选择上综合考虑了路径跳数和节点剩余能量,用以保证负载均衡,延长网络生存期,该算法使用了分流的方式避免拥塞。通过使用NS2仿真软件对EEMP-AODV路由协议进行仿真,结果显示其在拥塞避免、实时性、吞吐量和网络生存期方面的性能有明显提升。  相似文献   

3.
With rapid development of wireless communication, sensor, micro power system and electronic technology, the research on wireless sensor network has attracted more and more attention. The work proposed routing algorithm in wireless sensor network based on ant colony optimization by analyzing routing protocol and utilizing advanced idea. Ant colony optimization algorithm has advantages in implementing local work, supporting multiple paths and integrating link quality into pheromone formation. In routing selection, the work calculated probability that node is selected as the next hop according to pheromone concentration on the path. With characteristics including self-organization, dynamic and multipath, ant colony optimization algorithm is suitable for routing in wireless sensor network. With low routing cost, good adaptability and multipath, the algorithm balanced energy consumption to prolong network lifetime. In terms of simulation and experiments, ant colony algorithm was proved to be suitable for finding optimal routing in wireless sensor network, thus achieving design goal of routing algorithm.  相似文献   

4.
Using geographic routing, like GPSR, is efficient for ad hoc and wireless sensor networks, but it requires that nodes be aware of their physical positions. However, if there are holes in the network, routing across them using GPSR will lead to a lot of overloaded nodes on their boundaries. In this paper, we propose a distributed protocol, named hexagonal virtual coordinate (HVC), for constructing a virtual coordinate system. After the HVC is constructed, the nodes in the network will be aware of the relative coordinates among the landmarks through the HVC chart. Based on the HVC chart, a source node can find an auxiliary routing path (ARP) to indicate the direction of the journey from the source to the destination. Simulation results show that our protocol can support geographic routing efficiently, and the landmarks found by our protocol are uniformly located in the network even if some holes exist within it. In addition, our protocol is resilient to various network shapes and can find a load balancing routing path to the destination even if this path comes across holes in the network. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
In the last decade, underwater wireless sensor networks have been widely studied because of their peculiar aspects that distinguish them from common terrestrial wireless networks. Their applications range from environmental monitoring to military defense. The definition of efficient routing protocols in underwater sensor networks is a challenging topic of research because of the intrinsic characteristics of these networks, such as the need of handling the node mobility and the difficulty in balancing the energy consumed by the nodes. Depth‐based routing protocol is an opportunistic routing protocol for underwater sensor networks, which provides good performance both under high and low node mobility scenarios. The main contribution of our work is presenting a novel simulator for studying depth‐based routing protocol and its variants as well as novel routing protocols. Our simulator is based on AquaSim–Next Generation, which is a specialized tool for studying underwater networks. With our work, we improve the state of the art of underwater routing protocol simulators by implementing, among other features, a detailed cross‐layer communication and an accurate model of the operational modes of acoustic modem and their energy consumption. The simulator is open source and freely downloadable. Moreover, we propose a novel and completely distributed routing protocol, named residual energy–depth‐based routing. It takes into account the residual energy at the nodes' batteries to select the forwarder nodes and improve the network lifetime by providing a more uniform energy consumption among them. We compare its performance with that of depth‐based routing protocol and a receiver‐based routing protocol implementing a probabilistic opportunistic forwarding scheme.  相似文献   

6.
Wu  Jie 《Telecommunication Systems》2003,22(1-4):61-75
In this paper we consider a multipath extension to the dynamic source routing (DSR) protocol proposed by Johnson and Maltz, an on-demand routing protocol for ad hoc wireless networks. This extension keeps two node-disjoint paths between the source and destination of a routing process without introducing extra overhead. Unlike other multipath extensions where node-disjoint paths are selected at the destination or at the reply phase, our approach generates two node-disjoint paths during the query phase of the route discovery process by restricting the way the query packet is flooded. Several optimization options are also considered. Simulation is conducted to determine the success rate of finding node-disjoint paths.  相似文献   

7.
Congestion in the network is the main cause for packet drop and increased end‐to‐end transmission delay of packet between source and destination nodes. Congestion occurs because of the simultaneous contention for network resources. It is very important to efficiently utilize the available resources so that a load can be distributed efficiently throughout the network. Otherwise, the resources of heavily loaded nodes may be depleted very soon, which ultimately affects network performances. In this paper, we have proposed a new routing protocol named queue‐based multiple path load balancing routing protocol. This protocol discovers several node‐disjoint paths from source to destination nodes. It also finds minimum queue length with respect to individual paths, sorts the node‐disjoint paths based on queue length, and distributes the packets through these paths based on the minimum queue length. Simulation results show that the proposed routing protocol distributes the load efficiently and achieves better network performances in terms of packet delivery ratio, end‐to‐end delay, and routing overhead. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, a scalable priority-based multi-path routing protocol (PRIMP) is proposed for wireless sensor networks to offer extended network lifetime and robust network fault tolerance, under the context of stringent energy constraint and vulnerability of sensors to dynamic environmental conditions. A novel interest dissemination strategy which invokes an on-demand virtual source technique is designed in PRIMP to minimize communication overheads and energy wastage. In routing, data traffic is distributed over multiple braided data paths simultaneously by a priority-based probabilistic approach at each hop to achieve the robustness against the unreliable transmission due to frequent node failures. Extensive simulations validate that PRIMP exhibits significantly better performance in energy conservation, load-balancing and data delivery than comparable schemes, while at the same time PRIMP achieves a nice scalability feature in terms of energy dissipation with various network sizes and network densities. Last but not least, PRIMP addresses the slow startup problem that is prevalent in data-centric routing schemes.  相似文献   

9.
A mobile ad hoc network (MANET) is a dynamically reconfigurable wireless network that does not have a fixed infrastructure. Due to the high mobility of nodes, the network topology of MANETs changes very fast, making it more difficult to find the routes that message packets use. Because mobile nodes have limited battery power, it is therefore very important to use energy in a MANET efficiently. In this paper, we propose a power-aware multicast routing protocol (PMRP) with mobility prediction for MANETs. In order to select a subset of paths that provide increased stability and reliability of routes, in routing discovery, each node receives the RREQ packet and uses the power-aware metric to get in advance the power consumption of transmitted data packets. If the node has enough remaining power to transmit data packets, it uses the global positioning system (GPS) to get the location information (i.e., position, velocity and direction) of the mobile nodes and utilizes this information to calculate the link expiration time (LET) between two connected mobile nodes. During route discovery, each destination node selects the routing path with the smallest LET and uses this smallest link expiration time as the route expiration time (RET). Each destination node collects several feasible routes and then selects the path with the longest RET value as the primary routing path. Then the source node uses these routes between the source node and each destination node to create a multicast tree. In the multicast tree, the source node will be the root node and the destination nodes will be the leaf nodes. Simulation results show that the proposed PMRP outperforms MAODV (Royer, E. M. & Perkins, C. E. (1999). In Proceedings of the ACM MOBICOM, pp. 207–218, August 1999.) and RMAODV (Baolin, S. & Layuan, L. (2005). In Proceeding of the 2005 IEEE International symposium on microwave antenna, propagation and EMC technologies for wireless communications, Vol. 2, pp. 1514–1517, August 2005.).  相似文献   

10.
SMORT: Scalable multipath on-demand routing for mobile ad hoc networks   总被引:3,自引:0,他引:3  
L.  S.V.   《Ad hoc Networks》2007,5(2):162-188
Increasing popularity and availability of portable wireless devices, which constitute mobile ad hoc networks, calls for scalable ad hoc routing protocols. On-demand routing protocols adapt well with dynamic topologies of ad hoc networks, because of their lower control overhead and quick response to route breaks. But, as the size of the network increases, these protocols cease to perform due to large routing overhead generated while repairing route breaks. We propose a multipath on-demand routing protocol (SMORT), which reduces the routing overhead incurred in recovering from route breaks, by using secondary paths. SMORT computes fail-safe multiple paths, which provide all the intermediate nodes on the primary path with multiple routes (if exists) to destination. Exhaustive simulations using GloMoSim with large networks (2000 nodes) confirm that SMORT is scalable, and performs better even at higher mobility and traffic loads, when compared to the disjoint multipath routing protocol (DMRP) and ad hoc on-demand distance vector (AODV) routing protocol.  相似文献   

11.
Wireless networks are now very essential part for modern ubiquitous communication systems. The design of efficient routing and scheduling techniques for such networks have gained importance to ensure reliable communication. Most of the currently proposed geographic routing protocols are designed for 2D spatial distribution of user nodes, although in many practical scenarios user nodes may be deployed in 3D space also. In this paper, we propose 3D routing protocols for multihop wireless networks that may be implemented in two different ways depending on how the routing paths are computed. When the routing paths to different user nodes from the base station in the wireless network are computed by the base station, we call it centralized protocol (3DMA‐CS). A distributed routing (3DMA‐DS) protocol is implemented when respective routing path of each user node to the base station is computed by the user node. In both of these protocols, the user (base station) selects the relay node to forward packets in the direction of destination, from the set of its neighbours, which makes minimum angle with the reference line drawn from user (base station) to the base station (user), within its transmission range. The proposed protocols are free from looping problem and can solve the void node problem (VNP) of multihop wireless networks. Performance analysis of the proposed protocol is shown by calculating end‐to‐end throughput, average path length, end‐to‐end delay, and energy consumption of each routing path through extensive simulation under different network densities and transmission ranges.  相似文献   

12.
Over the last few years, wireless sensor networks have become a great field of interest for the scientific community. This novel kind of network provides an array of applications for different aspects of human life. To give a satisfying performance to the final user, the wireless sensor networks must ensure the quality of service. The use of multipath technique was widely applied in the literature. Nevertheless, there might be a problem if the interference issues are not taken into account by the multipath routing design. In this paper, we propose a novel multipath routing protocol called Carrier Sense Aware Multipath Geographic Routing protocol (CSA‐MGR). This protocol creates multiple paths while avoiding any shared carrier sense range by using a distributed and dynamic process. In addition, the CSA‐MGR employs a new metrics named the Number of Common Neighbors to guarantee a faster and an efficient path construction. Simulations conducted over the NS‐2 simulator show promising results in terms of delay, Packet Delivery Ratio and routing overhead. The performance gain of CSA‐MGR in terms of delay is up to 275% compared with the Two‐Phase geographical Greedy Forwarding and up to 565% compared with the ad hoc on‐demand multipath distance vector. For the Packet Delivery Ratio, the performance gain of CSA‐MGR is up to 16% compared with the Two‐Phase geographic Greedy Forwarding and up to 28% compared with the ad hoc on‐demand multipath distance vector. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
The energy consumption is a key design criterion for the routing protocols in wireless sensor networks (WSN). Some of the conventional single path routing schemes may not be optimal to maximize the network lifetime and connectivity. Thus, multipath routing schemes is an optimal alternative to extend the lifetime of WSN. Multipath routing schemes distribute the traffic across multiple paths instead of routing all the traffic along a single path. In this paper, we propose a multipath Energy-Efficient data Routing Protocol for wireless sensor networks (EERP). The latter keeps a set of good paths and chooses one based on the node state and the cost function of this path. In EERP, each node has a number of neighbours through which it can route packets to the base station. A node bases its routing decision on two metrics: state and cost function. It searches its Neighbours Information Table for all its neighbours concerned with minimum cost function. Simulation results show that our EERP protocol minimizes and balances the energy consumption well among all sensor nodes and achieves an obvious improvement on the network lifetime.  相似文献   

14.
针对传统路由协议端到端时延长、丢包率过高的现实问题,提出了一种基于贪婪转发的能量感知多路径路由协议(Greedy Forward Energy-aware Multipath Routing Protocol,GFEMRP)。GFEMRP从传感器起始结点出发,如果遇到网络黑洞则选择周边转发方式,否则将选择吞吐量大、且更接近于目的结点的结点作为下一跳结点。利用了OMNET++5.0和INET框架对包括无线自组网按需平面距离向量路由协议(Ad hoc on-demand distance vector routing protocol,AODV),动态按需无线自组织网络(Dynamic MANET On-demand,DYMO),贪婪周边无状态路由无线网络(Greedy Perimeter Stateless Routing for Wireless Networks,GPSR)和GFEMRP协议在内的四种路由协议进行了仿真和比较,实验结果表明GFEMRP协议具有良好的端到端时延、丢包率等性能。  相似文献   

15.
Communication security and reliability are two important issues in any network. A typical communication task in a wireless sensor network is for every sensor node to sense its local environment, and upon request, send data of interest back to a base station (BS). In this paper, a hybrid multipath scheme (H-SPREAD) to improve both the security and reliability of this task in a potentially hostile and unreliable wireless sensor network is proposed. The new scheme is based on a distributed N-to-1 multipath discovery protocol, which is able to find multiple node-disjoint paths from every sensor node to the BS simultaneously in one route discovery process. Then, a hybrid multipath data collection scheme is proposed. On the one hand, end-to-end multipath data dispersion, combined with secret sharing, enhances the security of the end-to-end data delivery in the sense that the compromise of a small number of paths will not result in the compromise of a data message in the face of adversarial nodes. On the other hand, in the face of unreliable wireless links and/or sensor nodes, alternate path routing available at each sensor node improves the reliability of each packet transmission significantly. The extensive simulation results show that the hybrid multipath scheme is very efficient in improving both the security and reliability of the data collection service seamlessly.  相似文献   

16.
Energy efficiency has become an important design consideration in geographic routing protocols for wireless sensor networks because the sensor nodes are energy constrained and battery recharging is usually not feasible. However, numerous existing energy‐aware geographic routing protocols are energy‐inefficient when the detouring mode is involved in the routing. Furthermore, most of them rarely or at most implicitly take into account the energy efficiency in the advance. In this paper, we present a novel energy‐aware geographic routing (EAGR) protocol that attempts to minimize the energy consumption for end‐to‐end data delivery. EAGR adaptively uses an existing geographic routing protocol to find an anchor list based on the projection distance of nodes for guiding packet forwarding. Each node holding the message utilizes geographic information, the characteristics of energy consumption, and the metric of advanced energy cost to make forwarding decisions, and dynamically adjusts its transmission power to just reach the selected node. Simulation results demonstrate that our scheme exhibits higher energy efficiency, smaller end‐to‐end delay, and better packet delivery ratio compared to other geographic routing protocols. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
提出了一种基于节点主观信任度的分布式多路径路由协议(distributed protocol for multipath routing based on node’s subjective trust degree,NSTD—DPMR)。在利用主观信任度对中间节点的恶意程度进行评估的基础上,分布式计算出源端节点发送数据的最佳速率,以及各中间节点的最佳转发速率。仿真实验表明,协议NSTD-DPMR能够在将恶意中间节点对数据传输的危害降低到最低程度的同时,最大化目的端节点接收到的正常数据,保证了路由的安全性和有效性,且协议的复杂度较低。  相似文献   

18.
Greedy geographic routing is attractive in wireless sensor networks because of its efficiency and scalability. This paper presents an up-down links dualpath greedy routing (UDLDGR) protocol for wireless sensor networks. The routing protocol not only reserves the features of greedy forwarding algorithm, which is simple, efficient, but also uses different relay nodes to serve as routing nodes for up and down routing paths, makes the energy consumption more balanced. The greatest advantage of UDLDGR is it trades off only small cost for the source node to obtain two different transmission paths information. The multipath strengthens the network reliability, such as load balancing and robustness to failures. Our simulation results show that UDLDGR can improve system lifetime by 20–100% compared to single path approaches.  相似文献   

19.
Wireless ad hoc and sensor networks are emerging with advances in electronic device technology, wireless communications and mobile computing with flexible and adaptable features. Routing protocols act as an interface between the lower and higher layers of the network protocol stack. Depending on the size of target nodes, routing techniques are classified into unicast, multicast and broadcast protocols. In this article, we give analysis and performance evaluation of tree‐based multicast routing in wireless sensor networks with varying network metrics. Geographic multicast routing (GMR) and its variations are used extensively in sensor networks. Multicast routing protocols considered in the analytical model are GMR, distributed GMR, demand scalable GMR, hierarchical GMR, destination clustering GMR and sink‐initiated GMR. Simulations are given with comparative analysis based on varying network metrics such as multicast group size, number of sink nodes, average multicast latency, number of clusters, packet delivery ratio, energy cost ratio and link failure rate. Analytical results indicate that wireless sensor network multicast routing protocols operate on the node structure (such as hierarchical, clustered, distributed, dense and sparse networks) and application specific parameters. Simulations indicate that hierarchical GMR is used for generic multicast applications and that destination clustering GMR and demand scalable GMR are used for distributed multicast applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
朱国巍  熊妮 《电视技术》2015,39(15):74-78
针对传感器节点的电池容量限制导致无线传感网络寿命低的问题,基于容量最大化(CMAX)、线上最大化寿命(OML)两种启发式方法以及高效路由能量管理技术(ERPMT),提出了基于ERPMT改进启发式方法的无线传感网络寿命最大化算法。首先,通过启发式方法初始化每个传感器节点,将节点能量划分为传感器节点起源数据和其它节点数据延迟;然后利用加入的一种优先度量延迟一跳节点的能量消耗;最后,根据路径平均能量为每个路由分配一个优先级,并通过ERPMT实现最终的无线传感网络优化。针对不同分布类型网络寿命的实验验证了本文算法的有效性及可靠性,实验结果表明,相比较为先进的启发式方法CMAX及OML,本文算法明显增大了无线传感网络的覆盖范围,并且大大地延长了网络的寿命。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号