首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel track initiation method using ants of different tasks, a kind of ant colony optimization (ACO) algorithm, is developed in this paper. For the proposed system of ants of different tasks, we assume that the number of tracks to be initiated equals the one of tasks, and moreover, ants of the same task search for a given track by collaboration, while ants of different tasks will compete with each other during the search process. In order to fulfill such behaviors, the pheromone model is established, and the corresponding objective function to be optimized is also presented. Numerical simulation results indicate that, for the case of bearings-only multi-sensor-multi-target tracking, the track initiation performance for the proposed system of ants of different tasks performs well compared to other track initiation methods.  相似文献   

2.
In this paper, the problem of bearings-only maneuvering target tracking in sensors network is investigated. Two objectives are proposed and optimized by the ant colony optimization (ACO), then two kinds of node searching strategies of the ACO algorithm are presented. On the basis of the nodes determined by the ACO algorithm, the interacting multiple models extended Kalman filter (IMMEKF) for the multi-sensor bearings-only maneuvering target tracking is introduced. Simulation results indicate that the proposed ACO algorithm performs better than the Closest Nodes method. Furthermore, the Strategy 2 of the two given strategies is preferred in terms of the requirement of real time.  相似文献   

3.
一种基于改进粒子滤波的多目标跟踪算法   总被引:6,自引:0,他引:6  
针对复杂背景环境下的多目标跟踪问题,论述了主要的数据关联技术,将目标检测算法与粒子滤波相结合,利用颜色直方图作为观测模型,并利用全领域(GNN)算法进行数据关联.提出一种改进的基于粒子滤波的多目标跟踪算法,实现了视频场景中的多个目标跟踪.该算法对于目标在场景中的频繁出现和消失、相似外表、交叉运动和短暂遮挡等均有较好的处理效果.  相似文献   

4.
A fast joint probabilistic data association (FJPDA) algorithm is proposed in tiffs paper. Cluster probability matrix is approximately calculated by a new method, whose elements βi^t(K) can be taken as evaluation functions. According to values of βi^t(K), N events with larger joint probabilities can be searched out as the events with guiding joint probabilities, tiros, the number of searching nodes will be greatly reduced. As a result, this method effectively reduces the calculation load and nnkes it possible to be realized on real-thne, Theoretical ,analysis and Monte Carlo simulation results show that this method is efficient.  相似文献   

5.
A fast joint probabilistic data association (FJPDA) algorithm is proposed in this paper. Cluster probability matrix is approximately calculated by a new method, whose elements βli(K) can be taken as evaluation functions. According to values of βti(K), N events with larger joint probabilities can be searched out as the events with guiding joint probabilities, thus, the number of searching nodes will be greatly reduced. As a result, this method effectively reduces the calculation load and makes it possible to be realized on real-time. Theoretical analysis and Monte Carlo simulation results show that this method is efficient.  相似文献   

6.
         下载免费PDF全文
In this paper, the problem of bearings-only maneuvering target tracking in sensors network is investigated. Two objectives are proposed and optimized by the ant colony optimization (ACO), then two kinds of node searching strategies of the ACO algorithm are presented. On the basis of the nodes determined by the ACO algorithm, the interacting multiple models extended Kalman filter (IMMEKF) for the multi-sensor bearings-only maneuvering target tracking is introduced. Simulation results indicate that the proposed ACO algorithm performs better than the Closest Nodes method. Furthermore, the Strategy 2 of the two given strategies is preferred in terms of the requirement of real time.  相似文献   

7.
自适应蚁群算法在多目标跟踪中的应用   总被引:2,自引:0,他引:2  
在多目标状态跟踪估计方法的研究中,多目标数据关联容易陷入局部最优状态以及跟踪精度不高的缺点,提出一种改进蚁群算法的数据关联方法.改进方法为:在传统蚁群算法的基础上,引入标识判定系数来调节信息素浓度的增量,避免某条路径上信息素浓度增长过快,从而陷入局部极值的情况,同时对挥发因子进行自适应控制,保持搜索的平衡性和全局性,避免搜索落入局部最优从而陷入停滞状态.仿真结果表明,改进的蚁群算法在多目标跟踪中,既可有效地避免搜索落入局部最优的弊端,又明显地提高了跟踪精度.  相似文献   

8.
This paper presents the analytic recursive formulas of Cramér-Rao lower bound (CRLB) for the switching models system, in which the target moves either with a constant velocity or with a constant speed and a constant turn rate. For the case of two-observer bearings-only maneuvering target tracking, a reliable maneuver detection method is investigated and then utilized to approximate the theoretic CRLB. Finally, to demonstrate the agreement between the approximated CRLB using the proposed maneuver detection method and the theoretic one, a large number of Monte-Carlo runs under different maneuvering scenarios are conducted. Correctness of the analytic recursive formulas of CRLB and effectiveness of the proposed maneuver detection method are verified from these simulations.  相似文献   

9.
In multi-object stochastic systems, the issue of sensor management is a theoretically and computationally challenging problem. In this paper, we present a novel random finite set (RFS) approach to the multi-target sensor management problem within the partially observed Markov decision process (POMDP) framework. The multi-target state is modelled as a multi-Bernoulli RFS, and the multi-Bernoulli filter is used in conjunction with two different control objectives: maximizing the expected Rényi divergence between the predicted and updated densities, and minimizing the expected posterior cardinality variance. Numerical studies are presented in two scenarios where a mobile sensor tracks five moving targets with different levels of observability.  相似文献   

10.
一种新的求解MMKP问题的ACO&PR算法   总被引:1,自引:0,他引:1  
针对多选择多维背包问题(MMKP)的特点,设计一种新型混合算法(ACO&PR).该算法将线路重连算法(PR)嵌入蚁群算法(ACO),在搜索过程中既考虑解的质量,又考虑解的分散性.线路重连算法在重连过程中,向导解的属性逐步引入起始解属性中,可快速获得该线路上的最优解.实验结果表明,该算法优于其他现有较好的方法,获得了较好的结果.  相似文献   

11.
A hybrid ant colony optimization algorithm is proposed by introducing extremal optimization local-search algorithm to the ant colony optimization (ACO) algorithm, and is applied to multiuser detection in direct sequence ultra wideband (DS-UWB) communication system in this paper. ACO algorithms have already successfully been applied to combinatorial optimization; however, as the pheromone accumulates, we may not get a global optimum because it can get stuck in a local minimum resulting in a bad steady state. Extremal optimization (EO) is a recently developed local-search heuristic method and has been successfully applied to a wide variety of optimization problems. Hence in this paper, a hybrid ACO algorithm, named ACO-EO algorithm, is proposed by introducing EO to ACO to improve the local-search ability of the algorithm. The ACO-EO algorithm is applied to multiuser detection in DS-UWB communication system, and via computer simulations it is shown that the proposed hybrid ACO algorithm has much better performance than other ACO algorithms and even equal to the optimal multiuser detector.  相似文献   

12.
The paper proposes a new ant colony optimization (ACO) approach, called binary ant system (BAS), to multidimensional Knapsack problem (MKP). Different from other ACO-based algorithms applied to MKP, BAS uses a pheromone laying method specially designed for the binary solution structure, and allows the generation of infeasible solutions in the solution construction procedure. A problem specific repair operator is incorporated to repair the infeasible solutions generated in every iteration. Pheromone update rule is designed in such a way that pheromone on the paths can be directly regarded as selecting probability. To avoid premature convergence, the pheromone re-initialization and different pheromone intensification strategy depending on the convergence status of the algorithm are incorporated. Experimental results show the advantages of BAS over other ACO-based approaches for the benchmark problems selected from OR library.  相似文献   

13.
Decision trees have been widely used in data mining and machine learning as a comprehensible knowledge representation. While ant colony optimization (ACO) algorithms have been successfully applied to extract classification rules, decision tree induction with ACO algorithms remains an almost unexplored research area. In this paper we propose a novel ACO algorithm to induce decision trees, combining commonly used strategies from both traditional decision tree induction algorithms and ACO. The proposed algorithm is compared against three decision tree induction algorithms, namely C4.5, CART and cACDT, in 22 publicly available data sets. The results show that the predictive accuracy of the proposed algorithm is statistically significantly higher than the accuracy of both C4.5 and CART, which are well-known conventional algorithms for decision tree induction, and the accuracy of the ACO-based cACDT decision tree algorithm.  相似文献   

14.
The problem of scheduling in permutation flow shop with the objective of minimizing the maximum completion time, or makespan, is considered. A new ant colony optimization algorithm is developed for solving the problem. A novel mechanism is employed in initializing the pheromone trails based on an initial sequence. Moreover, the pheromone trail intensities are limited between lower and upper bounds which change dynamically. When a complete sequence of jobs is constructed by an artificial ant, a local search is performed to improve the performance quality of the solution. The proposed ant colony algorithm is applied to Taillard’s benchmark problems. Computational experiments suggest that the algorithm yields better results than well-known ant colony optimization algorithms available in the literature.  相似文献   

15.
针对单载机仅用单传感器对目标进行纯方位测量的被动探测跟踪问题,研究了载机的不同机动方式对目标被动探测跟踪算法性能的影响。建立了修正极坐标下目标被动探测跟踪模型,分析了该模型在扩展的卡尔曼滤波中的滤波特性和载机机动方式对该模型的影响,在Matlab环境中进行了仿真。结果验证了在载机不机动的情况下,该目标被动探测跟踪算法无法跟踪上目标;载机机动后一定时间后不再做机动会导致算法重新发散;当载机做适当的周期机动,该算法可持续跟踪目标。  相似文献   

16.
In this paper we pose the problem of tracking of a varying number of points through an image sequence as a multi-objective optimization problem with additional hard constraints. One of the objectives is to find smooth tracks based on second-order motion characteristics optimized over several frames. The corresponding optimization algorithm we present is a sequential heuristic search algorithm that adequately prunes the search tree in such a way that its exponential order remains low. When the algorithm is compared to other tracking algorithms, it turns out that the proposed algorithm is easier to tune and generally more efficient and more accurate.  相似文献   

17.
为解决计算机辅助精液分析(CASA)系统中原版精子多目标跟踪算法在精子被白细胞或其它精子遮挡时,会产生检测失败和跟踪错误等问题,提出一种改进的抗遮挡算法。根据精子目标的面积和形态特征,判定遮挡的类型和发生期间,利用Kalman滤波对白细胞遮挡的精子进行虚拟定位跟踪,对精子互相遮挡的目标保持特征信息跟踪,在遮挡结束时重新匹配找回目标。实验结果表明,改进的算法能够成功跟踪到遮挡情况下的精子目标运动轨迹,提高了精子多目标跟踪算法的准确性和鲁棒性。  相似文献   

18.
Extracting classification rules from data is an important task of data mining and gaining considerable more attention in recent years. In this paper, a new meta-heuristic algorithm which is called as TACO-miner is proposed for rule extraction from artificial neural networks (ANN). The proposed rule extraction algorithm actually works on the trained ANNs in order to discover the hidden knowledge which is available in the form of connection weights within ANN structure. The proposed algorithm is mainly based on a meta-heuristic which is known as touring ant colony optimization (TACO) and consists of two-step hierarchical structure. The proposed algorithm is experimentally evaluated on six binary and n-ary classification benchmark data sets. Results of the comparative study show that TACO-miner is able to discover accurate and concise classification rules.  相似文献   

19.
In this paper a novel filtering procedure that uses a variant of the variable neighborhood search (VNS) algorithm for solving nonlinear global optimization problems is presented. The base of the new estimator is a particle filter enhanced by the VNS algorithm in resampling step. The VNS is used to mitigate degeneracy by iteratively moving weighted samples from starting positions into the parts of the state space where peaks and ridges of a posterior distribution are situated. For testing purposes, bearings-only tracking problem is used, with two static observers and two types of targets: non-maneuvering and maneuvering. Through numerous Monte Carlo simulations, we compared performance of the proposed filtering procedure with the performance of several standard estimation algorithms. The simulation results show that the algorithm mostly performed better than the other estimators used for comparison; it is robust and has fast initial convergence rate. Robustness to modeling errors of this filtering procedure is demonstrated through tracking of the maneuvering target. Moreover, in the paper it is shown that it is possible to combine the proposed algorithm with an interacted multiple model framework.  相似文献   

20.
Data aggregation in wireless sensor networks using ant colony algorithm   总被引:2,自引:0,他引:2  
Data aggregation is important in energy constraint wireless sensor networks which exploits correlated sensing data and aggregates at the intermediate nodes to reduce the number of messages exchanged network. This paper considers the problem of constructing data aggregation tree in a wireless sensor network for a group of source nodes to send sensory data to a single sink node. The ant colony system provides a natural and intrinsic way of exploring search space in determining data aggregation. Moreover, we propose an ant colony algorithm for data aggregation in wireless sensor networks. Every ant will explore all possible paths from the source node to the sink node. The data aggregation tree is constructed by the accumulated pheromone. Simulations have shown that our algorithm can reduce significant energy costs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号