首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper focuses on mode‐dependent H state‐feedback control for a class of discrete‐time Markovian jump systems (MJSs) with partial information on transition probabilities (TPs). The augmented free‐connection weighting matrices are introduced by considering the influence of partial information of TPs on discrete‐time MJSs and the disturbance input on the state vector. As a result, the less conservative stability criterion and bounded real lemma (BRL) of MJSs with partly unknown TPs are obtained. Then the sufficient conditions for designing the mode‐dependent H controllers are derived in terms of linear matrix inequalities (LMIs). Numerical examples are given to illustrate the effectiveness and the merits of the proposed method.  相似文献   

2.

The H sliding mode control is studied for a class of singular Markovian jump systems with sensor failure, incompleted transition probabilities and randomly changing structure. A quantized input sliding mode controller is designed to deal with the sensor failure and time-varying delay. A new sliding mode surface and a new Lyapunov function are constructed to achieve the system stable and reduce the effect of the jumping mode. Based on the linear matrix inequalities (LMIs) theory, some sufficient conditions are derived to guarantee stochastically admissible with performance γ. The sliding mode reachability is also guaranteed. Simulation results are given to illustrate the effectiveness of the proposed method in this paper.

  相似文献   

3.
This paper investigates the sliding mode control (SMC) problem for a class of discrete-time nonlinear networked Markovian jump systems (MJSs) in the presence of probabilistic denial-of-service (DoS) attacks. The communication network via which the data is propagated is unsafe and the malicious adversary can attack the system during state feedback. By considering random Denial-of-Service attacks, a new sliding mode variable is designed, which takes into account the distribution information of the probabilistic attacks. Then, by resorting to Lyapunov theory and stochastic analysis methods, sufficient conditions are established for the existence of the desired sliding mode controller, guaranteeing both reachability of the designed sliding surface and stability of the resulting sliding motion. Finally, a simulation example is given to demonstrate the effectiveness of the proposed sliding mode control algorithm.   相似文献   

4.
This article considers the robust H sliding mode control problem for a class of uncertain switched delay systems. A single sliding surface is constructed such that the reduced-order equivalent sliding motion restricted to the sliding surface is completely invariant to all admissible uncertainties. For cases of known delay and unknown delay, the existence conditions of the sliding surface are proposed, respectively. The corresponding hysteresis switching laws are designed such that the sliding motion is stabilisable with H disturbance attenuation level γ. Furthermore, variable structure controllers are developed to drive the state of the switched system to reach the single sliding surface in finite time and remain on it thereafter. Finally, two numerical examples are given to illustrate the effectiveness of the proposed design methods.  相似文献   

5.
This paper concerns the problem of robust H sliding mode control for a class of singular stochastic nonlinear systems. Integral sliding mode control is developed to deal with this problem. Based on the integral sliding surface of the design and linear matrix inequality, a sufficient condition which guarantees the sliding mode dynamics is asymptotically mean square admissible and has a prescribed H performance for a class of singular stochastic nonlinear systems is proposed. Furthermore, a sliding mode control law is synthesized such that the singular stochastic nonlinear system can be driven to the sliding surface in finite time. Finally, a numerical example is proposed to illustrate the effectiveness of the given theoretical results.  相似文献   

6.
In this paper, the sliding mode control (SMC) problem for continuous‐time Markovian jump systems (MJSs) is considered, in which the transition rate matrix (TRM) is partially unknown and uncertain. Firstly, the sliding mode surface S(t) = 0 is designed, which is mode‐dependent. Therefore, is used instead of in the SMC algorithm. Via adopting a linear matrix inequality (LMI) approach, sufficient conditions are proposed to ensure that the reduced order system is exponentially stable in mean square. Furthermore, the reduced order system is completely insensitive to the external disturbance. Secondly, SMC law is designed correspondingly which dominated by a Markov process. It could drive the state trajectories onto the specified sliding mode surface in finite time quickly and maintain them on the surface in subsequently time. Thirdly, a new term in will be introduced in the designed SMC and should be handled by a new approach. Finally, a numerical example is provided to show the effectiveness of the proposed method.  相似文献   

7.
In this paper, an ?? sliding mode control (SMC) problem is studied for a class of discrete‐time nonlinear stochastic systems with multiple data packet losses. The phenomenon of data packet losses, which is assumed to occur in a random way, is taken into consideration in the process of data transmission through both the state‐feedback loop and the measurement output. The probability for the data packet loss for each individual state variable is governed by a corresponding individual random variable satisfying a certain probabilistic distribution over the interval [0 1]. The discrete‐time system considered is also subject to norm‐bounded parameter uncertainties and external nonlinear disturbances, which enter the system state equation in both matched and unmatched ways. A novel stochastic discrete‐time switching function is proposed to facilitate the sliding mode controller design. Sufficient conditions are derived by means of the linear matrix inequality (LMI) approach. It is shown that the system dynamics in the specified sliding surface is exponentially stable in the mean square with a prescribed ?? noise attenuation level if an LMI with an equality constraint is feasible. A discrete‐time SMC controller is designed capable of guaranteeing the discrete‐time sliding mode reaching condition of the specified sliding surface with probability 1. Finally, a simulation example is given to show the effectiveness of the proposed method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
This paper considers mean‐square exponential stability and H control problems for Markovian jump systems (MJSs) with time delays which are time‐varying in an interval and depend on system mode. By exploiting a novel Lyapunov‐Krasovskii functional which takes into account the range of delay, and by making use of some techniques, new delay‐range‐dependent stability result and bounded real lemma for MJSs are obtained, where the introduction of the lower bound of delay is shown to be advantageous for reducing conservatism. Moreover, a sufficient condition for the solvability of the H control problem is derived in terms of linear matrix inequalities. Finally, illustrative examples are presented to show the advantage and effectiveness of the proposed approaches. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

9.
This paper is focused on the problem of adaptive sliding mode control design for uncertain neutral‐type stochastic systems under a prescribed H performance. A simplified state observer is put forward to estimate the unknown state variables, which could be properly incorporated for establishing a new linear‐type switching surface and the associated adaptive variable structure controller. By virtue of the adaptive control design, unknown matched perturbation and potential uncertainties can be counteracted, and the system trajectories are guaranteed to reach the predefined switching surface within finite moment in almost surely sense, and performance analysis of the closed‐loop dynamics during the sliding surface is carried out with a specified H performance. At last, two illustrative examples through computer simulations are provided to verify the effectiveness and applicability of the proposed scheme.  相似文献   

10.
一类切换系统基于观测器的滑模降阶控制   总被引:1,自引:0,他引:1  
针对一类状态不可测的切换系统, 研究了其基于观测器的滑模控制问题. 设计了一类降阶观测器, 并用观测到的状态设计了滑模面函数以及滑模控制器, 使得闭环系统的状态能够到达滑模面上, 产生滑动模态. 并应用Lyapunov函数的方法给出了切换系统的滑动模态可达条件以及确保闭环切换系统渐近稳定的离散切换律. 最后,数值仿真验证了本文所提方法的有效性.  相似文献   

11.
The purpose of this paper is to present a new design for an optimal fuzzy sliding mode control based on a modified parallel distributed compensator and using a scalar sign function method. The proposed fuzzy sliding mode control uses a modified parallel distributed compensator scheme to find the optimal gains. To do this, the control gains are not considered constant through the linearized subsystem. Among these, we find state feedback gains, which are determined in offline mode using some prescribed performance criteria. Moreover, the fuzzy sliding surface of the system is designed using a stable eigenvector and the scalar sign function. The advantages of the proposed design are minimum energy control effort, faster response, and zero steady‐state error. We analyze and test the performance and stability of the new optimal fuzzy sliding mode control using simulation results that show that the proposed approach is very effective.  相似文献   

12.
13.
A sliding mode control algorithm using output information only is developed in this paper for a linear system with mismatched disturbance. The nominal system is allowed to be nonminimum phase. A scheme designed to combine the output‐dependent integral sliding surface with a reduced‐order observer is proposed. Utilizing an H control analytical technique, once the system is in the sliding mode, the proposed algorithm can guarantee robust stabilization and sustain the nature of performing disturbance attenuation when the solution to one algebraic Riccati inequality can be found. A controller is designed to satisfy the reaching and sliding condition in line with the reduced‐order observer. Finally, a numerical example is explained to show the applicability of the proposed scheme. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

14.
This paper is concerned with the finite-time mixed H and passivity performance analysis and filter design for a class of uncertain nonlinear discrete-time Markovian jump systems (MJSs) described by Takagi–Sugeno fuzzy model with nonhomogeneous jump processes. In this paper, the proposed MJSs fuzzy model is formulated with norm-bounded parameter uncertainties and time-varying jump transition probability matrices. In particular, the time-varying transition probability matrices are expressed in respect of a polytope. By constructing a suitable Lyapunov functional, a new set of sufficient conditions is derived in the form of linear matrix inequalities (LMIs) to ensure that the filtering error system is robustly stochastically finite-time bounded and a prescribed mixed H and passive performance index is achieved. Moreover, the robust mixed H and passivity filter design gain matrices can be computed from the obtained LMIs. Furthermore, the developed results unify H and passive filtering problems in a single framework. Finally, two numerical examples including an application-oriented example are provided to demonstrate the effectiveness of the proposed filter design technique.  相似文献   

15.
This paper proposes an integrated fault estimation and fault‐tolerant control (FTC) design for Lipschitz non‐linear systems subject to uncertainty, disturbance, and actuator/sensor faults. A non‐linear unknown input observer without rank requirement is developed to estimate the system state and fault simultaneously, and based on these estimates an adaptive sliding mode FTC system is constructed. The observer and controller gains are obtained together via H optimization with a single‐step linear matrix inequality (LMI) formulation so as to achieve overall optimal FTC system design. A single‐link manipulator example is given to illustrate the effectiveness of the proposed approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
In this article, a multi-objective control u(t) is designed for stochastic model reference systems to achieve the following three objectives simultaneously: the pole placement constraint, H -norm constraint and individual error state variance constraint. Using the invariance property of sliding mode control, the reference model input and the plant error term will disappear on the sliding mode of the error system. By combining the upper bound covariance control theory, pole placement skill and H -norm control theory, a controller, in which the control feedback gain matrix is synthesised utilising linear matrix inequality (LMI) approach, is derived to achieve the above multiple objectives. Furthermore, a practical example for the problem of ship yaw-motion systems is adopted to illustrate the proposed method.  相似文献   

17.
For a linear system with mismatched disturbances, a sliding mode controller using only output feedback is developed in this paper. Through application of the H∞ control theory, the designed switching surface can achieve robust stabilization and guarantee a level of disturbance rejection during sliding mode. Although the system exhibits disturbances, a state estimator is used which, using only measured outputs, can asymptotically estimate the system states. The control law is designed with respect to the estimated signals. Finally, a numerical example is presented to demonstrate the proposed control scheme.  相似文献   

18.
The paper is devoted to investigating sliding mode control for a class of nonlinear uncertain stochastic systems with input nonlinearity and Markovian switching. A nonfragile observer subjected to the transition rates of the modes is designed. By some specified matrices, the connections among the designed sliding surfaces corresponding to every mode are established. The state estimation‐based sliding mode control law is derived to guarantee the reachability of the sliding surface in finite time interval. The sufficient conditions on asymptotically stochastic stability of the error system and sliding mode dynamics with a given disturbance attenuation level are derived in terms of linear matrix inequalities. Finally, an example is provided to illustrate the efficiency of the proposed method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
This paper proposes two robust inverse optimal control schemes for spacecraft with coupled translation and attitude dynamics in the presence of external disturbances. For the first controller, an inverse optimal control law is designed based on Sontag-type formula and the control Lyapunov function. Then a robust inverse optimal position and attitude controller is designed by using a new second-order integral sliding mode control method to combine a sliding mode control with the derived inverse optimal control. The global asymptotic stability of the proposed control law is proved by using the second method of Lyapunov. For the other control law, a nonlinear H inverse optimal controller for spacecraft position and attitude tracking motion is developed to achieve the design conditions of controller gains that the control law becomes suboptimal H state feedback control. The ultimate boundedness of system state is proved by using the Lyapunov stability theory. Both developed robust inverse optimal controllers can minimise a performance index and ensure the stability of the closed-loop system and external disturbance attenuation. An example of position and attitude tracking manoeuvres is presented and simulation results are included to show the performance of the proposed controllers.  相似文献   

20.
In this paper, a fault estimation and fault-tolerant control problem for a class of T-S fuzzy stochastic time-delay systems with actuator and sensor faults is investigated. A novel sliding mode observer is proposed, which can simultaneously estimate the system states, actuator and sensor faults with good accuracy. Based on the state and actuator fault estimation, a new sliding mode control scheme is developed, which can effectively eliminate the influence of actuator fault. Sufficient conditions for the existence of the proposed observer and fault-tolerant sliding mode controller are provided in terms of linear matrix inequality, and moreover, the reachability of the sliding mode surface can be guaranteed under the proposed control scheme. The propose sliding mode observer and fault-tolerant sliding mode controller can overcome the restrictive assumption that the input matrix of all local modes is the same. Finally, a numerical example is provided to verify the effectiveness of the proposed sliding mode observer and fault-tolerant sliding mode control technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号