首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
2.
A systematical decision-making approach is constructed for quality function deployment (QFD) in uncertain linguistic situations. The mathematical expression and operation of linguistic terms play important roles in the proposed approach in terms of customer requirements (CRs) and design requirements (DRs) in QFD. First, hesitant fuzzy linguistic term sets are designed to conveniently express uncertain linguistic terms and compute with words after the data derived from customers are pretreated and integrated in the decision-making process. Second, the tolerance deviation is defined to restrict innovatively the deviation range of fuzzy linguistic terms in the assessment stage of relative importance for CRs. Third, information entropy is originally designed to determine the final importance of DRs. Moreover, an empirical study on the research project called vortex recoil hydraulic retarder is conducted to demonstrate the performance of the systematical decision-making approach. The proposed approach can be applied to a wide variety of new product development problems in uncertainty settings.  相似文献   

3.
Nowadays selecting the most suitable robot is a difficult task for manufacturing firms due to increase in production demands and availability of various robot models. Robot evaluation and selection can be regarded as a multiple criteria decision-making (MCDM) problem and three key issues are the assessment of robots, the determination of criteria weights and the prioritisation of alternatives. This paper aims to propose an integrated model based on hesitant 2-tuple linguistic term sets and an extended QUALIFLEX approach for handling robot selection problems with incomplete weight information. The new model can not only manage uncertain and imprecise assessment information of decision-makers with the aid of hesitant 2-tuple linguistic term sets, but also derive the important weights of criteria objectively when the weight information is incompletely known. Moreover, based on the extended QUALIFLEX algorithm, the priority orders of robots can be clearly determined and a more reasonable and credible solution can be yielded in a particular industrial application. Finally, a robot selection case study is carried out, and comparative experiments indicate the practicality and effectiveness of the proposed integrated linguistic MCDM approach.  相似文献   

4.
In this paper, an integrated methodology for Quality Function Deployment (QFD) and a 0–1 knapsack model is proposed for occupational safety and health as a systems thinking approach. The House of Quality (HoQ) in QFD methodology is a systematic tool to consider the inter-relationships between two factors. In this paper, three HoQs are used to consider the interrelationships between tasks and hazards, hazards and events, and events and preventive/protective measures. The final priority weights of events are defined by considering their project-specific preliminary weights, probability of occurrence, and effects on the victim and the company. The priority weights of the preventive/protective measures obtained in the last HoQ are fed into a 0–1 knapsack model for the investment decision. Then, the selected preventive/protective measures can be adapted to the task design. The proposed step-by-step methodology can be applied to any stage of a project to design the workplace for occupational safety and health, and continuous improvement for safety is endorsed by the closed loop characteristic of the integrated methodology.  相似文献   

5.
Product planning is one of four important processes in new product development using quality function deployment (QFD), which is a widely used customer-driven approach. In this article, a hierarchical framework for product planning using QFD is developed. To tackle the fuzziness in functional relationships between customer requirements and engineering characteristics (ECs) in product planning, the least squares method is incorporated into fuzzy regression to investigate those functional relationships, by which a more central tendency can be obtained. Furthermore, a fuzzy expected value-based goal programing model is proposed to specify target values of ECs. Different from some fuzzy product planning approaches for QFD, the proposed programing model has unambiguous interpretations. An illustrated example of a quality improvement problem of emulsification dynamite-packing machine design is given to demonstrate the application and performance of the proposed approach.  相似文献   

6.
With a steep increase in the demand for consumer electronics products, the contemporary manufacturers are committed toward sustainable development of such products. There exists a scope for developing a methodology for enabling sustainable development of consumer electronics products. In this context, fuzzy quality function deployment (QFD) approach has been presented in this article in order to prioritize relevant customer requirements, sustainability parameters and sustainability initiatives. Key influential parameters for sustainable development of consumer electronics products have been identified from the literature. In the first phase of fuzzy QFD, parameters influencing sustainable development have been prioritized in accordance with customer requirements. In the second phase, environmental design initiatives have been prioritized based on critical sustainability parameters. From phase I of fuzzy QFD, ‘reduction in environmental release’ has been found as the most significant sustainability parameter with a crisp value of 22.83, and from phase II, environmental impact assessment is proved to be the significant design method with a crisp value of 20.40. The methodology would provide a comprehensive understanding to practitioners on the interrelationships among customer requirements, sustainability parameters and environmentally benign initiatives for development of consumer electronic products. The generic model developed can be applied to most of the consumer electronics product  相似文献   

7.
Motor vehicle crashes (MVCs) are an important cause of morbidity and premature loss of life among military personnel during peacetime and particularly following combat. A nested case-control study of fatal MVC occurring between 1991 and 1995 was conducted in a cohort of Gulf War era veterans. Cases were validated MVC deaths in the Fatality Analysis Reporting System. Controls were selected using risk set sampling by gender and year of case ascertainment in a 10:1 ratio. Preliminary results, consistent with previous reports of increased fatal MVC risk among returning combat veterans, showed a crude odds ratio of 1.45 (95% confidence interval 1.27-1.65). Multivariable logistic regression modeling was used to identify important independent predictors, as well as to quantify the influence of deployment on a risk profile for fatal MVC. Because of significant interaction between deployment and inpatient diagnosis of substance abuse, the final model was stratified by deployment status. Results suggest that demographic, military, and behavioral characteristics of deployed healthy warriors are similar to the risk profile for fatal MVC. In addition to young, single, high school-educated, enlisted male personnel, those who served during times of ground combat, particularly in infantry, gun crews, or seamanship occupations, should be targeted for preventive interventions.  相似文献   

8.
The objective of the work presented in this paper is the determination of an optimal age-based maintenance strategy for wheel motor armatures of a fleet of Komatsu haul trucks in a mining application in Chile. For such purpose, four years of maintenance data of these components were analyzed to estimate their failure distribution and a model was created to simulate the maintenance process and its restrictions. The model incorporates the impact of successive corrective (on-failure) and preventive maintenance on necessary new component investments. The analysis of the failure data showed a significant difference in failure distribution of new armatures versus armatures that had already undergone one or several preventive maintenance actions. Finally, the model was applied to calculate estimated costs per unit time for different preventive maintenance intervals. From the resulting relationship an optimal preventive maintenance interval was determined and the operational and economical consequences and effects with respect to the actual strategy were quantified. The application of the model resulted in the optimal preventive maintenance interval of 14,500 operational hours. Considering the failure distribution of the armatures, this optimal strategy is very close to a run-to-failure scenario.  相似文献   

9.
In this paper we derive a set of novel formulas for computation of the Green’s function and the coupled electro-elastic fields in a 2D piezoelectric strip with free boundaries and containing a distribution of straight line defects. The strip is assumed to be of unrestricted anisotropy, but allowing piezoelectricity, and in this sense situation is more general than in the available literature where only cubic symmetry was investigated. We employ a set of already known analytic formulas for the Fourier amplitude of the Green’s function and the corresponding electro-elastic fields. The key novelty of this paper is solution for the divergence problem occurring during integration of the Fourier amplitude. This problem is caused by poles at k = 0 in various matrix components of the amplitude. From purely mathematical point of view such poles lead to quantities which do not tend to zero at infinity, and this situation is clearly unphysical. To resolve this issue it is demonstrated by means of rigorous analysis that when some additional physical conditions are imposed, physical fields exhibit regular behavior at infinity - the poles do not contribute. Nevertheless, they lead to irremovable numerical ∞ − ∞ uncertainties spreading over the whole domain of integration. This motivates us to compute exact formulas for all these poles to enable engineering calculations involving the system in question.  相似文献   

10.
Analytic formulas for the Green’s function and the coupled electro-elastic fields for a 2D piezoelectric strip with free boundaries and containing a distribution of straight line defects have already been found some years ago. These formulas exploit the well-known Stroh formalism and the Fourier approach, so the result is given as the Fourier integral and therefore its numerical implementation should pose no problem. However, in this note we show that for the case of cubic symmetry this form of the Green’s function contains strong divergences, excluding possibilities of direct application of well-known numerical schemes. It is also shown that these divergences translate to divergences of the corresponding electro-elastic fields of a single defect. By means of a rigorous analysis it is demonstrated that imposing physical conditions implied by the nature of the problem all of these divergences cancel and the final, physical result exhibits expected, regular behavior at infinity. Unfortunately, although the nature of this problem is purely mathematical, it leads to irremovable numerical ∞ − ∞ uncertainties which tend to spread over the whole Fourier domain and severely impede engineering applications of the Green’s function. This motivates us to compute the exact form of all divergent terms. These novel formulas will serve as a guide when establishing numerically stable algorithms for engineering computations involving the system in question.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号