首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper,a new fuzzy adaptive control approach is developed for a class of SISO uncertain pure-feedback nonlinear systems with immeasurable states.Fuzzy logic systems are utilized to approximate the unknown nonlinear functions;and the filtered signals are introduced to circumvent algebraic loop systems encountered in the implementation of the controller,and a fuzzy state adaptive observer is designed to estimate the immeasurable states.By combining the adaptive backstepping technique,an adaptive fuzzy output feedback control scheme is developed.It is proven that the proposed control approach can guarantee that all the signals of the resulting closed-loop system are semi-globally uniformly ultimately bounded(SGUUB),and the observer and tracking errors converge to a small neighborhood of the origin by appropriate choice of the design parameters.Simulation studies are included to illustrate the efectiveness of the proposed approach.  相似文献   

2.
This paper investigates the problem of full state constraints-based adaptive control for a class of switched nonlinear pure-feedback systems under arbitrary switchings. First, the switched pure-feedback system is transformed into a switched strict-feedback system with non-affine terms based on the mean value theorem. Then, by exploiting the common Lyapunov function (CLF) method, the Barrier Lyapunov function method and backstepping, state feedback controllers of individual subsystems and a common Barrier Lyapunov function (CBLF) are constructed, which guarantee that all signals in the closed-loop system are global uniformly bounded under arbitrary switchings, and full state constraints are not violated. Furthermore, the tracking error can converge to a bounded compact set. Two examples, which include a single-link robot as a practical example, are provided to demonstrate the effectiveness of the proposed design method.  相似文献   

3.
This paper considers the problem of adaptive fuzzy control of a class of single-input/single-output (SISO) nonlinear stochastic systems in non-strict-feedback form. Fuzzy logic systems are used to approximate the uncertain nonlinearities and backstepping technique is utilized to construct an adaptive fuzzy controller. The proposed controller guarantees that all the signals in the resulting closed-loop system are bounded in probability. The main contribution of this note lies in providing a control strategy for a class of nonlinear systems in non- strict-feedback form. Simulation result is used to test the effectiveness of the suggested approach.  相似文献   

4.
This paper is concerned with the problem of adaptive fuzzy output tracking control for a class of nonlinear pure-feedback stochastic systems with unknown dead-zone. Fuzzy logic systems in Mamdani type are used to approximate the unknown nonlinearities, then a novel adaptive fuzzy tracking controller is designed by using backstepping technique. The control scheme is systematically derived without requiring any information on the boundedness of dead-zone parameters (slopes and break-points) and the repeated differentiation of the virtual control signals. The proposed adaptive fuzzy controller guarantees that all the signals in the closed-loop system are bounded in probability and the system output eventually converges to a small neighbourhood of the desired reference signal in the sense of mean quartic value. Simulation results further illustrate the effectiveness of the proposed control scheme.  相似文献   

5.
ABSTRACT

This paper considers the output-feedback fault-tolerant tracking control problem for a class of uncertain nonlinear switched systems with nonlinear faults and strict-feedback form, where the faults which are nonaffine occur on the actuator. As a kind of specialised function approximating tool, fuzzy logic systems (FLSs), are employed to approximate the unknown smooth nonlinear functions. A switched fuzzy observer is designed to address the problem of unmeasurable states, filtered signals are used to address algebraic loop problem and the average dwell time (ADT) method is further utilised to prove the stability of the resulting closed-loop systems under a type of slowly switching signals. Based on the backstepping recursive design technique and Lyapunov function method, an adaptive fuzzy output-feedback control scheme is developed. The developed control method can ensure all the signals are semi-globally uniformly ultimately bounded (SGUUB) and the system output tracks the reference signal tightly even if unknown fault occurs. A simulation carried on an example demonstrates the validity of the obtained control scheme.  相似文献   

6.
In addressing the adaptive neural backstepping control for multiple-input and multiple-output nonlinear systems in pure-feedback form with time-delay and input quantisation, we construct a high-gain state observer and an output-feedback adaptive control scheme using backstepping method, with neural networks to estimate the uncertain nonlinear functions. Then, we propose an output feedback neural controller that ensures all the state trajectories in the time-delay quantised nonlinear systems are ultimately bounded, with the control signal being quantised by either a hysteretic quantiser or a logarithmic quantiser. An illustrative example is presented to show the applicability of the new control method developed.  相似文献   

7.
In this paper, a robust adaptive neural control design approach is presented for a class of uncertain pure-feedback nonlinear systems. To reduce the complexity of the both controller structure and computation, only one neural network is used to approximate the lumped unknown function of the system at the last step of the recursive design process. By this approach, the complexity growing problem existing in conventional methods can be eliminated completely. Stability analysis shows that all the closed-loop system signals are uniformly ultimately bounded, and the steady state tracking error can be made arbitrarily small by appropriately choosing control parameters. Simulation results demonstrate the effectiveness and merits of the proposed approach.  相似文献   

8.
This paper presents a model-free prescribed performance design methodology for the robust fault-tolerant tracking (RFTT) of uncertain switched pure-feedback nonlinear systems under arbitrary switching. Unexpected faults in switched non-affine nonlinearities and in an actuator are considered. Using the prescribed performance design and the common Lyapunov function method, a common RFTT scheme is proposed to ensure that the tracking error remains within preassigned performance bounds and finally converges to a preselected neighbourhood of the origin, regardless of arbitrary switching and unexpected faults. Contrary to existing results in the literature, the proposed methodology does not require fault compensation mechanisms such as adaptive techniques and function approximators using neural networks or fuzzy systems. Thus, the structure of the proposed RFTT scheme is simpler than that of the existing control schemes. Moreover, the proposed approach can predesign the transient performance bounds at the instants when switching and faults occur. Finally, the simulation results are provided to demonstrate the effectiveness of the proposed theoretical approach.  相似文献   

9.
In this paper, the fault-tolerant control (FTC) problem is investigated for a class of multi-input multiple output nonlinear systems with time-varying delays, and an active FTC method is proposed. The controlled system contains unknown nonlinear functions, unknown control gain functions and actuator faults, which integrates time-varying bias and gain faults. Then, fuzzy logic systems are used to approximate the unknown nonlinear functions and unknown control gain functions, fuzzy adaptive observers are used for fault detection and isolation. Further, based on the obtained information, an accommodation method is proposed for compensating the actuator faults. It is shown that all the variables of the closed-loop system are semi-globally uniformly bounded, the tracking error converges to an arbitrary small neighbourhood of the origin. A simulation is given to demonstrate the effectiveness of the proposed approach.  相似文献   

10.
This paper investigates the problem of adaptive output feedback tracking for uncertain switched nonlinear systems, under arbitrary switching. First, an adaptive output feedback controller is designed, which ensures the boundedness of all the closed-loop signals. Then, a novel adaptive-based robust output feedback control is proposed to drive the tracking error to zero, in which the bound of disturbances is not required to be known in advance. Both control algorithms are based on the common Lyapunov function method, without any restrictions on dwell time. To evaluate the performance of the proposed output feedback control schemes, a numerical example is presented and discussed.  相似文献   

11.
The problem of adaptive tracking is considered for a class of stochastic switched systems, in this paper. As preliminaries, the criterion of global asymptotical practical stability in probability is first presented by the aid of common Lyapunov function method. Based on the Lyapunov stability criterion, adaptive backstepping controllers are designed to guarantee that the closed-loop system has a unique global solution, which is globally asymptotically practically stable in probability, and the tracking error in the fourth moment converges to an arbitrarily small neighbourhood of zero. Simulation examples are given to demonstrate the efficiency of the proposed schemes.  相似文献   

12.
一类严格反馈非线性系统的间接自适应模糊控制   总被引:2,自引:0,他引:2  
针对一类不确定严格反馈非线性系统,设计了间接自适应模糊控制方法.该方法用模糊逻辑系统逼近设计过程中的未知函数,基于时变宽度死区对模糊逻辑系统中的未知参数进行自适应调节,并对时变死区宽度设计了自适应律.证明了该方法能使闭环系统的所有信号有界,且可使跟踪误差收敛到原点的小邻域内.仿真算例验证了该方法的有效性.  相似文献   

13.
A novel adaptive neural control scheme is designed for a class of pure-feedback nonlinear systems with non-affine functions possibly being discontinuous. The non-affine function is not necessary to be continuous with respect to control variables or input, and the bounds of non-affine function are unknown functions. Some compact sets are constructively introduced to investigate the bounds of non-affine function so as to cope with the difficulty from these unknown bounds. Moreover, the dynamic surface control technique has been utilised for handling with the problem of ‘explosion of complexity’, and the minimal learning parameter technique is also employed to overcome the problem of excessive parameters. Furthermore, it is highly proved that all the variables will always stay in the introduced compact sets, and all the signals in the closed-loop control system are semi-globally uniformly ultimately bounded by choosing the appropriate design parameters. Finally, simulation examples are provided to demonstrate the effectiveness of the designed approach.  相似文献   

14.
In this paper, an indirect adaptive fuzzy control scheme is presented for a class of multi-input and multi-output (MIMO) nonlinear systems whose dynamics are poorly understood. Within this scheme, fuzzy systems are employed to approximate the plant’s unknown dynamics. In order to overcome the controller singularity problem, the estimated gain matrix is decomposed into the product of one diagonal matrix and two orthogonal matrices, a robustifying control term is used to compensate for the lumped errors, and all parameter adaptive laws and robustifying control term are derived based on Lyapunov stability analysis. The proposed scheme guarantees that all the signals in the resulting closed-loop system are uniformly ultimately bounded (UUB). Moreover, the tracking errors can be made small enough if the designed parameter is chosen to be sufficiently large. A simulation example is used to demonstrate the effectiveness of the proposed control scheme.  相似文献   

15.
Adaptive NN control of uncertain nonlinear pure-feedback systems   总被引:3,自引:0,他引:3  
This paper is concerned with the control of nonlinear pure-feedback systems with unknown nonlinear functions. This problem is considered difficult to be dealt with in the control literature, mainly because that the triangular structure of pure-feedback systems has no affine appearance of the variables to be used as virtual controls. To overcome this difficulty, implicit function theorem is firstly exploited to assert the existence of the continuous desired virtual controls. NN approximators are then used to approximate the continuous desired virtual controls and desired practical control. With mild assumptions on the partial derivatives of the unknown functions, the developed adaptive NN control schemes achieve semi-global uniform ultimate boundedness of all the signals in the closed-loop. The control performance of the closed-loop system is guaranteed by suitably choosing the design parameters.  相似文献   

16.
This paper investigates the problem of global adaptive finite-time stabilisation for a class of switched nonlinearly parameterised systems. Without requiring that each subsystem is globally adaptively finite-time stabilisable, a switched adaptive finite-time control scheme is developed by exploiting the multiple Lyapunov functions method and adding a power integrator technique. By using the parameter separation technique, the unknown parameters are separated from nonlinear functions. On the basis of finite-time Lyapunov stability theory, it is proved that the proposed controller can guarantee that the state of the resulting closed-loop system converges to the origin in finite time. Finally, an example is given to demonstrate the effectiveness of the proposed method.  相似文献   

17.
Direct adaptive fuzzy control of nonlinear strict-feedback systems   总被引:8,自引:0,他引:8  
This paper focuses on adaptive fuzzy tracking control for a class of uncertain single-input /single-output nonlinear strict-feedback systems. Fuzzy logic systems are directly used to approximate unknown and desired control signals and a novel direct adaptive fuzzy tracking controller is constructed via backstepping. The proposed adaptive fuzzy controller guarantees that the output of the closed-loop system converges to a small neighborhood of the reference signal and all the signals in the closed-loop system remain bounded. A main advantage of the proposed controller is that it contains only one adaptive parameter that needs to be updated online. Finally, an example is used to show the effectiveness of the proposed approach.  相似文献   

18.
基于观测器的非线性互连系统的自适应模糊控制   总被引:1,自引:0,他引:1  
针对一类不确定非线性MIMO互连系统,提出一种自适应模糊控制算法.通过设计观测器来估计系统的状态,因此不要求假设系统的状态是可测的.给出的自适应律只对不确定界进行在线调节,从而大大减轻了在线计算负担.该算法能够保证闭环系统的所有信号是一致有界的,并且跟踪误差指数收敛到一个小的零邻域内.仿真结果表明了算法的可行性.  相似文献   

19.
In this paper, the robust adaptive fuzzy tracking control problem is discussed for a class of perturbed strict-feedback nonlinear systems. The fuzzy logic systems in Mamdani type are used to approximate unknown nonlinear functions. A design scheme of the robust adaptive fuzzy controller is proposed by use of the backstepping technique. The proposed controller guarantees semi-global uniform ultimate boundedness of all the signals in the derived closed-loop system and achieves the good tracking performance. The possible controller singularity problem which may occur in some existing adaptive control schemes with feedback linearization techniques can be avoided. In addition, the number of the on-line adaptive parameters is not more than the order of the designed system. Finally, two simulation examples are used to demonstrate the effectiveness of the proposed control scheme.  相似文献   

20.
In this paper, an adaptive fuzzy output feedback control approach based on backstepping design is proposed for a class of SISO strict feedback nonlinear systems with unmeasured states, nonlinear uncertainties, unmodeled dynamics, and dynamical disturbances. Fuzzy logic systems are employed to approximate the nonlinear uncertainties, and an adaptive fuzzy state observer is designed for the states estimation. By combining backstepping technique with the fuzzy adaptive control approach, a stable adaptive fuzzy...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号