首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
主要是对非完整约束下移动机器人的轨迹跟踪控制进行了研究,提出了一种新型的基于移动机器人运动模型、具有全局渐近稳定性的跟踪控制方法。这种非线性控制方法主要分为前馈和反馈两个部分:前馈部分是一种滑模控制器,它是基于反演设计的思想设计了切换函数,采用指数趋近律,减少了滑模变结构控制的抖动,并使用Lyapunov第一法对控制系统进行了稳定性分析,证明了滑模跟踪控制器是稳定的;反馈部分是基于Lyapunov函数的方法设计的反馈控制器。通过前馈部分和反馈部分的相互作用,提高了移动机器人轨迹跟踪控制的精度。实验结果表明与一般的跟踪控制方法相比,控制效果明显改善,跟踪误差能在较短时间内收敛,具有很好的抗干扰性能。  相似文献   

2.
刘旭光  杜昌平  郑耀 《计算机应用》2022,42(12):3950-3956
为进一步提升在未知环境下四旋翼无人机轨迹的跟踪精度,提出了一种在传统反馈控制架构上增加迭代学习前馈控制器的控制方法。针对迭代学习控制(ILC)中存在的学习参数整定困难的问题,提出了一种利用强化学习(RL)对迭代学习控制器的学习参数进行整定优化的方法。首先,利用RL对迭代学习控制器的学习参数进行优化,筛选出当前环境及任务下最优的学习参数以保证迭代学习控制器的控制效果最优;其次,利用迭代学习控制器的学习能力不断迭代优化前馈输入,直至实现完美跟踪;最后,在有随机噪声存在的仿真环境中把所提出的强化迭代学习控制(RL-ILC)算法与未经参数优化的ILC方法、滑模变结构控制(SMC)方法以及比例-积分-微分(PID)控制方法进行对比实验。实验结果表明,所提算法在经过2次迭代后,总误差缩减为初始误差的0.2%,实现了快速收敛;并且与SMC控制方法及PID控制方法相比,RL-ILC算法在算法收敛后不会受噪声影响产生轨迹波动。由此可见,所提算法能够有效提高无人机轨迹跟踪的准确性和鲁棒性。  相似文献   

3.
This paper presents the application of the acceleration sensor in the enhancement of the performance of high-precision motion tracking linear actuators which are based on permanent magnet linear motors (PMLM). A feedforward–feedback control structure is developed which harness effectively the acceleration measurements made available. It utilises a linear full-state feedback controller and an iterative learning feedforward controller (ILC). Experimental results show the acceleration feedback can improve the tracking performance and learning convergence of the control system.  相似文献   

4.
A novel control technique is proposed by combining iterative learning control (ILC) and model predictive control (MPC) with updating-reference trajectory for point-to-point tracking problem of batch process. In this paper, a batch-to-batch updating-reference trajectory, which passes through the desired points, is firstly designed as the tracking trajectory within a batch. The updating control law consists of P-type ILC part and MPC part, in which P-type ILC part can improve the performance by learning from previous executions and MPC part is used to suppress the model perturbations and external disturbances. Convergence properties of the integrated predictive iterative learning control (IPILC) are analyzed theoretically, and the sufficient convergence conditions of output tracking error are also derived for a class of linear systems. Comparing with other point-to-point tracking control algorithms, the proposed algorithm can perform better in robustness. Furthermore, updating-reference relaxes the constraints for system outputs, and it may lead to faster convergence and more extensive range of application than those of fixed-reference control algorithms. Simulation results on typical systems show the effectiveness of the proposed algorithm.  相似文献   

5.
局部对称积分型迭代学习控制   总被引:4,自引:1,他引:3  
提出了一个新的迭代学习控制(ILC)更新律用于连续线性系统的有限时间区间跟踪控制,迭代学习控制作为一个前馈控制,迭代学习控制作为一个前馈控制器加在已有的反馈控制器之上,对于上倥 的反馈控制信号作局部对称积分,所提出的迭代学习控制更新律具备较简单的形式且仅含有两个设计参数,即:学习增益和局部积分的区间长度,给出了收敛性分析以及设计步骤。  相似文献   

6.
To improve stability and convergence, feedback control is often incorporated with iterative learning control (ILC), resulting in feedback feed-forward ILC (FFILC). In this paper, a general form of FFILC is studied, comprising of two feedback controllers, a state feedback controller and a tracking error compensator, for the robustness and convergence along time direction, and an ILC for performance along the cycle direction. The integrated design of this FFILC scheme is transformed into a robust control problem of an uncertain 2D Roesser system. To describe the stability and convergence quantitatively along the time and the cycle direction, the concepts of robust stability and convergence along the two axes are introduced. A series of algorithms are established for the FFILC design. These algorithms allow the designer to balance and choose optimization objectives to meet the FFILC performance requirements. The applications to injection molding velocity control show the good effectiveness and feasibility of the proposed design methods.  相似文献   

7.
A new iterative learning control (ILC) updating law is proposed for tracking control of continuous linear system over a finite time interval. The ILC is applied as a feedforward controller to the existing feedback controller. By using the weighted local symmetrical integral (WLSI) of feedback control signal of previous iteration, the ILC updating law takes a simple form with only two design parameters: the learning gain and the range of local integration. Convergence analysis is presented together with a design procedure. A set of experimental results are presented to illustrate the effectiveness of the proposed WLSI-ILC scheme.  相似文献   

8.
已有的边界控制方法主要是基于模型的反馈控制算法,其实际应用效果受制于模型参数的标定和环境的影响.迭代学习控制以完全跟踪为目标,仅利用较少的模型信息就可以沿迭代轴实现对系统期望输出的完全跟踪.基于城市交通流的重复特性,提出一种城市交通区域的迭代学习边界控制方法,给出跟踪误差收敛性分析.以日本横滨区域为对象分别进行3种场景的仿真:早高峰、晚高峰和中心区域拥堵.仿真结果表明,迭代学习控制方法对于各种场景下的区域路网交通均能达到较为理想的控制效果.  相似文献   

9.
The goal of iterative learning control (ILC) is to improve the accuracy of a system that repeatedly follows a reference trajectory. This paper proves that for each causal linear time-invariant ILC, there is an equivalent feedback that achieves the ultimate ILC error with no iterations. Remarkably, this equivalent feedback depends only on the ILC operators and hence requires no plant knowledge. This equivalence is obtained whether or not the ILC includes current-cycle feedback. If the ILC system is internally stable and converges to zero error, there exists an internally stabilizing feedback that approaches zero error at high gain. Since conventional feedback requires no iterations, there is no reason to use causal ILC.  相似文献   

10.
The iterative learning control (ILC) obtains the unknown information from repeated control operations. Meanwhile, the tracking error from previous stages is used as the correction factor for the next control action. Therefore, the ILC controller can make the system tracking error converge to a small region within a limited number of iterations. This study builds a proportional-valve-controlled pneumatic XY table system for performing position tracking control experiments. The experiments involve implementing the ILC controllers and comparing the results. The P-type updating law with delay parameters is used for both the x- and y-axes in the repetitive trajectory tracking control. Experimental results demonstrate that the ILC controller can effectively control the system and track the desired circular trajectory at different speeds. The control parameters are varied to investigate their effects on the ILC convergence.  相似文献   

11.
In this paper, an adaptive iterative learning control (ILC) method is proposed for switched nonlinear continuous-time systems with time-varying parametric uncertainties. First, an iterative learning controller is constructed with a state feedback term in the time domain and an adaptive learning term in the iteration domain. Then a switched nonlinear continuous-discrete two-dimensional (2D) system is built to describe the adaptive ILC system. Multiple 2D Lyapunov functions-based analysis ensures that the 2D system is exponentially stable, and the tracking error will converge to zero in the iteration domain. The design method of the iterative learning controller is obtained by solving a linear matrix inequality. Finally, the efficacy of the proposed controller is demonstrated by the simulation results.  相似文献   

12.
The P-type update law has been the mainstream technique used in iterative learning control (ILC) systems, which resembles linear feedback control with asymptotical convergence. In recent years, finite-time control strategies such as terminal sliding mode control have been shown to be effective in ramping up convergence speed by introducing fractional power with feedback. In this paper, we show that such mechanism can equally ramp up the learning speed in ILC systems. We first propose a fractional power update rule for ILC of single-input-single-output linear systems. A nonlinear error dynamics is constructed along the iteration axis to illustrate the evolutionary converging process. Using the nonlinear mapping approach, fast convergence towards the limit cycles of tracking errors inherently existing in ILC systems is proven. The limit cycles are shown to be tunable to determine the steady states. Numerical simulations are provided to verify the theoretical results.   相似文献   

13.
This paper presents a P‐type iterative learning control (ILC) scheme for uncertain robotic systems that perform the same tasks repetitively. The proposed ILC scheme comprises a linear feedback controller consisting of position error and exponentially weighted velocity error with respect to the number of iterations, and a feedforward learning controller updated by the exponentially weighted velocity error from previous trial. As the learning iteration proceeds, the position and velocity errors converge uniformly to zero within error bounds that decay exponentially through the sequence of iterations with arbitrarily selected convergence rate. Consequently, the proposed ILC scheme enables analysis and tuning of the exponential convergence rate in the iteration domain in contrast to other existing P‐type ILC schemes. © 2003 Wiley Periodicals, Inc.  相似文献   

14.
This paper investigates variable-gain PD-type iterative learning control (ILC) for a class of nonlinear time-varying systems to well balance high-gain convergence rate and low-gain noise transmission. Different from the classic PD-type ILC, the control gains of the proposed method are variable. Each variable-gain consists of an amplitude-dependent term and an iteration-varying term. The amplitude-dependent terms vary with the amplitudes of tracking error and derivative of tracking error, and the iteration-varying terms are increasing along the iteration axis. The proposed ILC achieves a faster convergence rate than low-gain ILC and higher tracking accuracy with limited noise amplification than high-gain ILC. Moreover, the convergence condition of the proposed method in the presence of external noise is provided. Simulation and experimental results demonstrate the effectiveness of the proposed method.  相似文献   

15.
16.
为了增强迭代学习控制的鲁棒性,加快学习过程的收敛速度,而又不过多地依赖于系统内部信息,本文基于向量图分析思路,利用输入空间的向量构造三角形修正结构,得到了一种新的迭代学习控制算法.该算法根据跟踪误差的大小,调节输入控制量在三角形的一条边上滑动,在跟踪误差较大时,算法能找到控制期望的大致位置并加速收敛,在跟踪误差较小时,能将控制量稳定在其期望的很小邻域内,理论上证明了该邻域直径大小为跟踪误差的二阶无穷小.数值仿真结果说明了它的有效性和优越性.  相似文献   

17.
基于未知控制增益的非线性系统自适应迭代反馈控制   总被引:2,自引:0,他引:2  
针对一类单输入单输出不确定非线性重复跟踪系统, 提出一种基于完全未知控制增益的自适应迭代反馈控制. 与普通迭代学习控制需要学习增益稳定性前提条件不同, 所提自适应迭代反馈控制律通过不断修改Nuss baum形式的反馈增益达到收敛. 证明当迭代次数i→δ时, 重复跟踪误差可一致收敛到任意小界δ. 仿真显示了所提控制方法的有效性.  相似文献   

18.
一类线性离散切换系统的迭代学习控制   总被引:1,自引:0,他引:1  
考虑具有任意切换序列线性离散切换系统的迭代学习控制问题. 假设切换系统在有限时间区间内重复运行, P型ILC算法可实现该类系统在整个时间区间内的完全跟踪控制. 采用超向量方法给出了算法在迭代域内收敛的条件, 并在理论上分析了的收敛性. 仿真示例验证了理论的结果.  相似文献   

19.
In iterative learning control schemes for linear discrete time systems, conditions to guarantee the monotonic convergence of the tracking error norms are derived. By using the Markov parameters, it is shown in the time-domain that there exists a non-increasing function such that when the properly chosen constant learning gain is multiplied by this function, the convergence of the tracking error norms is monotonic, without resort to high-gain feedback.  相似文献   

20.
An optimal iterative learning control (ILC) strategy of improving endpoint products in semi-batch processes is presented by combining a neural network model. Control affine feed-forward neural network (CAFNN) is proposed to build a model of semi-batch process. The main advantage of CAFNN is to obtain analytically its gradient of endpoint products with respect to input. Therefore, an optimal ILC law with direct error feedback is obtained explicitly, and the convergence of tracking error can be analyzed theoretically. It has been proved that the tracking errors may converge to small values. The proposed modeling and control strategy is illustrated on a simulated isothermal semi-batch reactor, and the results show that the endpoint products can be improved gradually from batch to batch. Supported by the National Natural Science Foundation of China (Grant Nos. 60404012, 60874049), the National High-Tech Research & Development Program of China (Grant No. 2007AA041402), the New Star of Science and Technology of Beijing City (Grant No. 2006A62), and the IBM China Research Lab 2008 UR-Program  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号