首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The high temperature mechanical properties of two sintered silicon nitride—based ceramic materials with different microstructural features, labelled N7202 and N3208, are presented. The mechanical behaviour was examined by creep tests in compression, at temperatures between 1450 and 1700 °C in argon atmosphere. The results, analysed in terms of the creep equation, yield n=0.6±0.1 and Q=470±20 kJ/mol for N7202, and n=0.6±0.1 and Q=530±10 kJ/mol for N3208. The microstructural observations allow identify a possible microscopic deformation mechanism compatible with the set of creep parameters obtained experimentally.  相似文献   

3.
A ceramic made from a powder of silicon nitride which is obtained by self-propagating high-temperature synthesis is investigated. Yttrium-aluminum garnet and mullite are used as sintering aids. The strength of the material obtained reaches 540 MPa. __________ Translated from Steklo i Keramika, No. 3, pp. 17–19, March, 2007.  相似文献   

4.
Influences of the sintering liquid system, temperature, microstructure and post sintering heat treatment of high temperature (30–1250°C) strength, Young's modulus and fracture toughness of sintered silicon nitride (SSN) have been studied. Based on quantitative fractography, typical fracture origin statistics has been presented for SSN. The measured strength of the SSN is in good agreement with the fractographically predicted strength.  相似文献   

5.
烧结助剂对反应烧结氮化硅陶瓷的影响   总被引:2,自引:0,他引:2  
以Si粉和C粉为主要原料 ,在氮气流量为1.2L·min- 1,氮化温度为 1380℃ ,保温时间为 2 0h的条件下 ,研究了分别以 10wt%的MgO、Al、Al2 O3和Al2 O3+Y2 O3粉为烧结助剂对反应烧结氮化硅陶瓷的影响。结果表明 :以MgO粉作烧结助剂时 ,试样的主要成分是MgSiO3,另外还有Si2 N2 O ,但没有Si3N4 生成 ;以Al粉作烧结助剂时 ,试样的主要成分是SiO2 ,仅有少量Si3N4 存在 ;以Al2 O3作烧结助剂时 ,试样的主要成分是β Si3N4 和α Si3N4 ;以 2wt%Al2 O3+8wt%Y2 O3作烧结助剂时 ,试样的主要成分为 β Si3N4 ,同时含有少量α Si3N4 。  相似文献   

6.
This study reports the influence of aluminium nitride on the pressureless sintering of cubic phase silicon carbide nanoparticles (β-SiC). Pressureless sintering was achieved at 2000 °C for 5 min with the additions of boron carbide together with carbon of 1 wt% and 6 wt%, respectively, and a content of aluminium nitride between 0 and 10 wt%. Sintered samples present relative densities higher than 92%. The sintered microstructure was found to be greatly modified by the introduction of aluminium nitride, which reflects the influence of nitrogen on the β-SiC to α-SiC transformation. The toughness of sintered sample was not modified by AlN incorporation and is relatively low (around 2.5 MPa m1/2). Materials exhibited transgranular fracture mode, indicating a strong bonding between SiC grains.  相似文献   

7.
This second part of the report deals with, how the sintering additives Y2O3, Al2O3, and MgO influence the sintering behaviour of SRBSN. Paraffin-based feedstocks with varying sintering aid compositions and silicon grain size were used for moulding macro- and micro-scale samples. It was observed that compositions with smaller Si grain size (with correspondingly high SiO2 content) and containing Al2O3 as sintering additive exhibit higher shrinkage and lower residual porosity when sintered at 1700–1800 °C after nitridation. The mechanical properties determined for micro-scale samples were obtained by three-point bending tests, with the resulting characteristic strength values σ0 ranging from 500 MPa up to 1200 MPa. Surprisingly residual porosity did not play the role of a strength limiting factor; rather it was observed that the presence of crystalline secondary phases – mainly Y2Si3O3N4 – was responsible for reducing the micro-bending strength. As micro-samples exhibit a large surface-to-volume ratio they are in particular affected by decomposition of Si3N4 and volatilization of SiO2 which is considered to be responsible for the occurrence of secondary phases preferred at the sample surface. The powder bed condition was also found to play a prominent role in the development of the secondary phases during liquid phase sintering.  相似文献   

8.
In order to establish a process for the manufacturing of injection moulded micro-components of sintered reaction-bonded silicon nitride (SRBSN) several process parameters were investigated with regard to their influence on the reaction-bonding step. One question to be answered was how the sintering aids affect the nitridation behaviour of a silicon green body. For the processing of micro-components it was of special interest to study, how a decreasing sample size and wall thickness would influence the rate of Si3N4 formation. By varying the added amounts of the sintering aids, it was found that increasing the Y2O3 and MgO contents both improved the nitridation rate, whereas an increase of Al2O3 content resulted in reduced nitridation rates. Within the investigated range of sample dimensions (0.2–4.0 g) the unexpected observation was made, that with decreasing sample weight the nitridation rate also decreased. This was explained by the exothermic nature of the reaction between Si and N2 and the fact that small samples with a large surface-to-volume ratio attain thermal equilibrium with their environment better than large samples which may be subject to local overheating.  相似文献   

9.
We prepared sintered reaction-bonded silicon nitride ceramics by using yttria and magnesia as sintering additives and evaluated the effects of nitrogen pressure (0.1–1.0 MPa) on their microstructure, bending strength, fracture toughness, and thermal conductivity. The ratio of β phase in the nitrided compacts varied with the pressure and increased with increasing it. Since many β grains in the nitrided compacts were formed and interlocked each other with a stable three-dimensional structure which restricted the shrinkage during the sintering procedure, many pores remained in the sintered body. Under the middle pressure (0.3–0.5 MPa), the grains grew large because the number of formed nuclei was small. On the other hand, under the high pressures (0.8–1.0 MPa), the grains were relatively fine and uniform because of a large number of nuclei. Since the porosity and grain length depended on the nitridation mechanism, which was affected by the nitrogen pressure, the properties largely varied accordingly. The nitridation at 0.1 MPa gave the best properties in this study.  相似文献   

10.
We prepared sintered reaction-bonded silicon nitride ceramics by using yttria and magnesia as sintering additives and evaluated effects of the nitridation temperature on their microstructure, bending strength, fracture toughness, and thermal conductivity. The effects of the nitridation temperature were large, but different depending on the property. The ratio of β-phase in the nitrided compacts significantly increased with increasing the nitridation temperature, whereas their microstructures had no clear difference. Although the bending strength varied, it maintains a high value of 800 MPa. Fracture toughness was almost constant regardless the temperature. The thermal conductivity improved as the β-phase in the nitrided compact increases. This resulted in a decrease of the lattice oxygen content and increase of the thermal conductivity. Therefore, elevating the nitridation temperature and consequently the β-phase ratio should be a promising strategy for achieving compatibly high strength and high thermal conductivity, which are generally known to be in a trade-off relationship.  相似文献   

11.
The results of the experimental study of mechanical treatment of highly refractory ceramic parts made of various compositions based on silicon nitride are described. The revealed regularities of the surface layer and defect formation have been used to develop a two-stage process for working these parts, which ensures high machining efficiency and a minimum level of surface layer defects. The proposed technology has been used in making cutting plates from nitride ceramics, which has increased their average resistance by 15–20%. __________ Translated from Novye Ogneupory, No. 8, pp. 19–24, August, 2006.  相似文献   

12.
《Ceramics International》2019,45(11):14338-14346
Formation of silicon affects different physical properties of silicon nitride ceramics. Decomposition of Si3N4 and formation of free Si are highly important processes and depend on many factors. The proposed method of combined nano-Raman spectroscopy and X-ray diffraction (XRD) allows quantitative analysis of Si in silicon nitride. Raman spectroscopy enables the determination of atomic bonds and rapid and easy identification of free silicon. Further analysis of the crystalline phases by XRD enables the calculation of the amount of free silicon. The proposed complex method allows the characterization of such complicated processes as silicon nitride decomposition, microstructure formation and, in particular, the formation of the nanoscale grain boundary phase because Si nanosized precipitates are the nucleants of secondary phases during crystallization. Strong 522.8 cm−1 mode and 943.1–984.3 cm−1 transverse optical modes of free Si were clearly observed in the investigated silicon nitride that was subjected to pressureless sintering at 1800 °C. Reported ceramics demonstrated typical microstructures with elongated grains and relatively high microhardness and Young's modulus. It was shown that the aspect ratio depended linearly on the microhardness and Young's modulus. High values of the Young's modulus (more than 290 GPa) and microhardness (more than 1800 HV) were shown for reported silicon nitride produced by hot pressing and pressureless sintering via cold isostatic pressing with a higher quantity of sintering agent. The features of molecular structure of the reported Si3N4 ceramics were clearly described and discussed in detail and were found to be in good agreement with the microstructure and phase composition of these ceramics.  相似文献   

13.
Special features of formation of the microstructure and phase composition of sintered materials based on Si3N4 and α-sialons synthesized in the Si - Y - Al - O - N system by the method of compressive and microwave sintering are described. It is concluded that the morphology of the initial Si3N4 powders, the phase composition of the initial mixture, and the sintering technology of the ceramics in the decisive stage determine its microstructure, including the processes of self-reinforcement by β-Si3N4 crystals, the phase composition, and the physicomechanical characteristics. Translated from Ogneupory i Tekhnicheskaya Keramika, No. 7, pp. 28 – 31, July, 2000.  相似文献   

14.
Silicon nitride (Si3N4) was prepared from silicon by a sintered reaction-bonded silicon nitride method using yttria and magnesia as sintering additives. Post-sintering (PS) of nitrided compacts was carried out at 1850°C under a nitrogen pressure of 1 MPa. Effect of PS time on microstructure and dielectric breakdown strength (DBS) of the prepared Si3N4 ceramics was evaluated. The DBS was measured using specimens with four different thicknesses (0.30, 0.20, 0.10, and 0.05 mm) in order to examine the thickness dependence. The porosity of the sintered Si3N4 decreased by prolonging the PS time, and the full density could be achieved at the PS time of over 6 h. After full densification, rod-like β-Si3N4 grains grew up, and their maximum grain size increased from 45.1 to 154.7 μm by prolonging the PS time from 6 to 48 h. The DBS of the thick Si3N4 substrates (0.30 mm) showed little variation from 35.4 to 47.0 kV/mm, regardless of the PS time. On the other hand, that of the thin ones (0.05 mm) dramatically decreased from 99.5 to 9.8 kV/mm with increased the PS time from 6 to 48 h. Because the DBS sharply decreased at the thin substrate sintered for longer time in which some large-elongated grains might span the substrate thickness-wise throughout, it was inferred that the interface between β-Si3N4 grains and grain boundary phase/intergranular glassy films might be a path of the dielectric breakdown.  相似文献   

15.
When reaction-bonded silicon nitride containing MgO/Y2O3 additives is sintered at three different temperatures to form sintered reaction-bonded silicon nitride (SRBSN), the thermal conductivity increases with sintering temperature. The β-Si3N4 (silicon nitride) crystals of SRBSN ceramics were synthesized and characterized to investigate the relation between the crystal structure and the lattice oxygen content. The hot-gas extraction measurement result and the crystal structure obtained using Rietveld analysis suggested that the unit cell size of the β-Si3N4 crystal increases with the decrease in the lattice oxygen content. This result is reasonable considering that the lattice oxygen with the smaller covalent radius substitutes nitrogen with the larger one in the β-Si3N4 crystals. The lattice oxygen content decreased with increasing sintering temperature which also correlated with increase in thermal conductivity. Moreover, it is noteworthy from the viewpoint that it may be possible to apply the lattice constant analysis for the nondestructive and simple measurement of the lattice oxygen content that deteriorates the thermal conductivity of the β-Si3N4 ceramics.  相似文献   

16.
17.
The oxidation of sintered aluminium nitride samples having porosity of 12–16% has been studied at temperatures of 900–1100°C and 98.66 kPa oxygen pressure. It has been established that the reaction of AIN with oxygen obeys the parabolic law. The main products of AIN oxidation are α-Al2O3 and nitrogen with nitrogen oxides traces. The corresponding rate constants and apparent activation energy (61 kcal/mol) were calculated from the experimental data. It has been demonstrated that sintered aluminium nitride is resistant enough to high-temperature oxidation and can be used as a refractory material up to 1100°C.  相似文献   

18.
The tribological behaviors of silicon nitride (Si3N4) sliding against sintered polycrystalline diamond (PCD) were investigated by varying the relative humidity (RH) in the testing atmosphere. The results indicated that higher RH corresponds to higher wear loss of Si3N4 and the wear loss of PCD almost fell close to zero. Especially in the case of 85% RH, both a maximum wear loss of Si3N4 and a maximum friction coefficient were achieved. In addition, this study revealed insights into the interface chemistry effects on the wear behavior of Si3N4 under humidity. When water molecules were introduced into the testing atmosphere, the hydrolysis reaction occurred on the Si3N4 surface with the formation of the Si‐O‐Si bond across the sliding interface. And then, the hydration reaction dominated the process, during which Si‐OH was formed through the bond fracture of the Si‐O‐Si. The X‐ray photoelectron spectroscopy results showed that the ratios of Si‐OH/Si‐O and Si‐N/Si‐OH+Si‐O bonds increased as the relative RH levels increased. As a consequence, the wear loss of Si3N4 significantly increased. Thus, due to the hydrolysis and hydration reactions, the tribological behaviors of Si3N4 against sintered polycrystalline diamond can be essentially controlled via varying RH levels.  相似文献   

19.
Sintered reaction-bonded silicon nitride (SRBSN) with improved thermal conductivity was achieved after the green compact of submicron Si powder containing 4.22 wt% impurity oxygen and Y2O3-MgO additives was nitrided at 1400 °C for 6 h and then post-sintered at 1900 °C for 12 h using a BN/graphite powder bed. During nitridation, the BN/10 wt% C powder bed altered the chemistry of secondary phase by promoting the removal of SiO2, which led to the formation of larger, purer and more elongated Si3N4 grains in RBSN sample. Moreover, it also enhanced the elimination of SiO2 and residual Y2Si3O3N4 secondary phase during post-sintering, and thus induced larger elongated grains, decreased lattice oxygen content and increased Si3N4-Si3N4 contiguity in final SRBSN product. These characteristics enabled SRBSN to obtain significant increase (∼40.7%) in thermal conductivity from 86 to 121 W  m−1  K−1 without obvious decrease in electrical resistivity after the use of BN/graphite instead of BN as powder bed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号