首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
The linear viscoelastic properties and syneresis of freshly prepared and freeze/thawed white sauces prepared with different native starches (corn, waxy corn, potato and rice) at different shearing speeds were studied. Viscosity changes during processing were also measured using a starch pasting cell attached to a rheometer. The freeze/thaw cycle produced a significant increase in the viscous and elastic modulus and the appearance of syneresis in the corn and potato starch sauces, while the waxy corn and rice starch sauces were only slightly affected. Syneresis was significantly reduced upon subsequent heating. Greater shearing speed produced a significant decrease in viscoelasticity. Viscosity profiles revealed that the increase in shearing speed decreased the starch gelatinization temperature and swelling capacity and increased starch breakdown.  相似文献   

3.
魏燕霞  谢瑞  郭肖  丁采荷  张继 《食品科学》2017,38(1):149-153
研究刺槐豆胶/黄原胶复配体系的流变性,并采用流变学的Cross模型进行拟合分析。结果表明:刺槐豆胶与黄原胶复配可以产生协同作用,当刺槐豆胶与黄原胶的复配体积比为4∶6时,复配体系的黏度最大,触变测试中形成的滞后环面积最大,并且在黏弹性测试中储能模量G’表现出最大值。因此,刺槐豆胶与黄原胶的最佳复配比例为体积比4∶6。对最佳比例复配体系进行不同温度处理后测试可知,最佳复配体系的最适处理温度为80℃,得到的复配体系黏度最大;复配体系的p H值在6.0~10.0之间时,其黏度变化较小,保持相对稳定。  相似文献   

4.
Xanthan and locust bean gums are polysaccharides able to produce aqueous solutions with high viscosity and non‐Newtonian behaviour. When these solutions are mixed a dramatic increase on viscosity is observed, much greater than the combined viscosity of the separated polysaccharide solutions. In this work the influences of different variables on the viscosity of solutions of mixtures of xanthan/locust bean gum have been studied. Total polysaccharide concentration, xanthan and locust bean ratio on mixture and temperature at which the gum was dissolved (dissolution temperature) for both xanthan and locust bean gums have been considered. Under these different operational mixture conditions shear rate and time have also been considered to describe the rheological behaviour of the solutions studied. The high viscosity increase observed in these mixtures is due to the interaction between xanthan gum and locust bean gum molecules. This interaction takes place between the side chains of xanthan and the backbone of the locust bean gum. Both xanthan molecule conformation in solution – tertiary structure – and locust bean gum structure show great influence on the final viscosity of the solution mixtures. Xanthan conformation changes with temperature, going from ordered structures to disordered or chaotic ones. Locust bean gum composition changes with dissolution temperature, showing a dissolved galactose/mannose ratio reduction when temperature increases, ie the smooth regions – zones without galactose radicals – are predominantly dissolved. The highest viscosity was obtained for the solution mixture with a total polysaccharide concentration of 1.5 kg m−3 and a xanthan/locust ratio of 2:4 (w/w) and when xanthan gum and locust bean gum were dissolved at 40°C and 80°C, respectively. © 1999 Society of Chemical Industry  相似文献   

5.
The aim of this study was to investigate the effects of non-starch hydrocolloids (NSH) on the physicochemical properties and stability of a béchamel sauce. Three different NSH (guar gum, xanthan gum and carboxymethylcellulose) were added at two concentrations (0.10 wt.% and 0.25 wt.%) hereby replacing an equal amount of modified starch. Sauce batches were stored at refrigerated temperatures during four weeks and were rheologically characterized at day 2, 16 and 30 after preparation. The addition of all hydrocolloids caused a marked increase of the consistency index compared to the model system whereas this parameter decreased for all sauces during refrigerated preservation. The yield stress was also increased by the NSH. Furthermore all studied NSH reduced the amount of syneresis, with xanthan gum being the most effective. Besides, sensory tests demonstrated that there were no significant differences in taste and general preference between the hydrocolloid sauces and the model system.  相似文献   

6.
The effect of different hydrocolloids on the breaking strength, cohesiveness and rigidity of kappa carrageenan gels was studied using comression tests with the Instron. Instrumental measurements were supplemented with benchtop sensory evaluation of texture by mouth, gel clarity and syneresis. The evaluated hydrocolloids included locust bean gum, iota carrageenan, amidated low methoxyl pectin, xanthan gum, and their selected combinations. Best gels were obtained by using 0.15% kappa carrageenan and 0.85% iota carrageenan, or 0.2% kappa carrageenan, 0.2% locust bean gum and 0.6% amidated LM pectin. Although none duplicated the textural quality of gelatine gels, they represented a wide range of interesting and potentially useful textures.  相似文献   

7.
The properties of o/w emulsions stabilized with 1%w/v common bean (Phaseolus vulgaris L.), V or scarlet runner bean (P. coccineus L.), Coc extracted by isoelectric precipitation or ultrafiltration, at pH 7.0 and 5.5, with the addition of Arabic gum, locust bean gum, xanthan gum and a mixture of xanthan gum–locust bean gum (0.1 %w/v and 0.25 %w/v) are studied. The stability of emulsions was evaluated on the basis of oil droplet size, creaming, viscosity and protein adsorption measurements. The addition of Arabic gum, caused an increase in D[4,3] values and a decrease in the amount of protein adsorbed at the interface. The addition of locust bean gum in some emulsions reduced the amount of protein adsorbed. The addition of xanthan and to a less extend of the polysaccharide mixture, promoted a decrease in D[4,3]. So, emulsion stability was affected by the polysaccharide nature. Differences were also observed with respect to the protein nature, the method of its preparation and emulsion's pH. All polysaccharides enhanced the emulsions viscosity with xanthan and xanthan–locust bean gum exhibiting the higher values. V isolates and isoelectricaly precipitated isolates of both V, Coc showed higher viscosity values. The stability was enhanced by the increase of the viscosity of the continuous phase and the creation of a network, which prevents the oil droplets from coalescence.  相似文献   

8.
将小麦淀粉分别与黄原胶和瓜尔豆胶以一定的比例复配,利用析水率实验、DSC方法和SEM微观结构观察等方法,研究亲水胶体黄原胶和瓜尔豆胶在5次冻融循环过程中对小麦淀粉稳定性的影响。研究结果表明:小麦淀粉的析水率随着循环次数的增加而增加,黄原胶和瓜尔豆胶能够明显降低冻融过程中小麦淀粉的析水率,从而抑制小麦淀粉冻融过程中的老化,且随着亲水胶体浓度的增加,对冻融稳定性的改善作用越强;小麦淀粉经过5次冻融循环后,淀粉胶基形成了大量的孔洞,并产生不连续丝状的,类似纤维的结构,且基质较薄,添加亲水胶体后显著改变了小麦淀粉的表观形态,孔洞明显减少,且淀粉基质增厚,形成了类似片状的网络结构。因此,黄原胶和瓜尔豆胶均能在一定程度上改善小麦淀粉的冻融稳定性,且与添加浓度有关。  相似文献   

9.
BACKGROUND: Lallemantia royleana (Balangu) is a mucilaginous endemic plant which is grown in different regions of world. The flow behaviour of Balangu seed extract (BSE) and its mixture with xanthan, guar and locust bean gums at 1:3, 1:1 and 3:1 ratios, in addition to control samples (0% BSE), were evaluated. To describe the rheological properties of samples, the power law model was fitted on apparent viscosity–shear rate data. To evaluate the interaction between BSE and selected hydrocolloids in dilute solutions, the relative viscosity was also investigated. RESULTS: There was no significant difference between the consistency coefficient of guar and locust bean solutions and their blends substituted with 250 g kg?1 BSE. The BSE–xanthan mixture at 1:3 and 1:1 ratios had consistency index equal to xanthan solution. BSE–locust bean gum at all ratios, BSE–xanthan at 1:3 ratio and BSE–guar gum at 1:1 and 3:1 ratios indicated relative viscosity lower than values calculated assuming no interaction. The intrinsic viscosity value of BSE was determined 3.50 dL g?1. CONCLUSION: The apparent viscosities of BSE, selected hydrocolloids and their blends were the same at a shear rate of 293 s?1 and the commercial gums can be substituted by 250 g kg?1 and 500 g kg?1 BSE. Copyright © 2011 Society of Chemical Industry  相似文献   

10.
The texture stability of hydrogel complexes containing curdlan gum over multiple freeze–thaw cycles (FTCs) was investigated. The hydrogels formed by curdlan and xanthan gum, locust bean gum, carrageenan or guar gum at various combinations were stored at 4C for 24 h before subjected to five FTCs alternating between − 16 (18 h) and 25C (6 h). Xanthan/curdlan hydrogels showed the highest freeze–thaw stability in terms of syneresis, heat stability and adhesiveness. The viscosity of xanthan/curdlan combination was the lowest among all samples studied yet the most stable over the five FTCs, whereas significant changes were observed with locust bean/curdlan hydrogels. The guar/curdlan combination before freeze–thaw treatments exhibited predominant elasticity; however, as the cycles progressed the elasticity decreased. The most stable gel strength was achieved when curdlan was combined with guar or xanthan at 2% (w/v) total concentration, while carrageenan/curdlan gels were the least stable.

PRACTICAL APPLICATIONS


Texture instability remains the most significant challenge for frozen food products, especially with inevitable post-production temperature fluctuations. Loss of moisture and changes in textural attributes often results in significant reduction of product quality. Precise control of hydrogel complexes that provide texture stabilization over multiple freeze–thaw cycles will enhance the quality of existing products while enabling the development of new ones.  相似文献   

11.
为进一步提高糯玉米汁稳定性,比较研究不同亲水胶体(黄原胶、海藻酸钠、瓜尔豆胶和刺槐豆胶)对糯玉米汁体系稳定系数、离心沉淀率、相对黏度和感官的影响,并探讨糯玉米汁体系的静电稳定性。结果表明:黄原胶具有一定的乳化效果,可以在一定程度上缓解糯玉米汁脂肪圈的形成;海藻酸钠、瓜尔豆胶和刺槐豆胶对糯玉米汁的稳定效果较好,并且随着添加量的增加,体系稳定系数和相对黏度逐渐提高;而黄原胶与海藻酸钠、瓜尔豆胶、刺槐豆胶分别以不同质量比复配时,在黄原胶、刺槐豆胶质量比1:4时,糯玉米汁体系稳定性最佳。  相似文献   

12.
Five different hydrocolloids (tragacanth gum, guar gum, carboxy methyl cellulose, xanthan gum and locust bean gum) were added, at levels of 0, 0.5, and 1 g/100 g (w/w), respectively, to three different formulated ketchups which were processed from cold-break tomato paste dilutions, having total soluble solid (TSS) contents of 7.5, 10, and 12.5 g/100 g (w/w), in sequence, and the effect of these hydrocolloids on the rheological properties of tomato ketchups was investigated using a viscometer with smooth surface wide-gap coaxial cylinders. All hydrocolloids increased the consistency of the tested samples; however, guar gum and locust bean gum caused the maximum increase, followed by xanthan gum, tragacanth gum and carboxy methyl cellulose (CMC). Both the ketchup formulation and the hydrocolloid concentration were found to affect the consistency of ketchups. The highest consistency index was obtained by processing dilutions with a TSS content of 12.5%, and the addition of hydrocolloids at the level of 1%. The fluidity of the ketchups decreased with both the addition of all hydrocolloids and the increase in hydrocolloids concentration. Furthermore, the fluidity of the ketchups was also affected by ketchup formulation, and it was found to be the lowest for the samples prepared from the tomato paste dilutions having a TSS content of 12.5%.  相似文献   

13.
The surface tension of protein isolates from common bean (Phaseolus vulgaris L.) and scarlet runner bean (Phaseolus coccineus L.), prepared by isoelectric precipitation and ultrafiltration was evaluated, with respect to protein concentration (0.001–0.1% w/v) and pH (pH 4.5, 5.5, 7.0 and 8.0). Surface tension was most reduced, and with a higher rate of reduction at higher protein concentration and at pH 8.0. Foams (1, 2% w/v protein), at the same pH values, with and without the addition of polysaccharides, were studied. The proteins’ foaming behaviour was related to their adsorption behaviour. Arabic gum, locust bean gum (0.1% and 0.25% w/v), xanthan gum and a xanthan/locust bean gum mixture (0.1% w/v) had a positive effect on foam creation. All polysaccharides increased foam stability, probably due to the viscosity increase and to the creation of a network, which prevents the air droplets from coalescence. Isolates from P. coccineus and isolates obtained by ultrafiltration seemed to exhibit better foaming properties.  相似文献   

14.
Native maize starches containing amylose are used for manufacturing gels in food technology at concentrations of about 7%. Depending on the pasting conditions chosen, several hours may be required for the final consistency to be attained. For this reason the influence of hydrocolloids was investigated with economic factors dictating an effective concentration of approximately 5% in terms of the pure starch. The gelation process was monitored quantitatively by means of rheomechanical oscillation measurements in the linear viscoelastic range. The substances investigated were polysaccharides with chemically similar structures and classified as safe under foodstuff regulations: guar gum, locust bean gum, x-carrageenan, t-carrageenan, xanthan and carboxymethylcellulose (CMC). The gelation process can be significantly accelerated by a range of hydrocolloids, with the effect decreasing as follows: CMC > locust bean gum > guar gum > x-carrageenan > xanthan. The mixtures achieved between 45% and 80% of the final gelation stability of pure starch of 100Pa. The gelation process is clearly retarded by the hydrocolloid t-carrageenan. With the aid of the rheological data it is possible to correlate the influence of the hydrocolloids on the process of self-aggregation and also on the resulting viscoelastic properties of the mixed gels with one another. In terms of a molecular interpretation it is possible to distinguish between exclusion effects and specific interactions in the functioning of the hydrocolloids.  相似文献   

15.
本研究分别将黄原胶和魔芋胶添加至鸭蛋清中制备碱诱导凝胶,以探究亲水胶体对凝胶高温液化的抑制作用,结果表明:与对照组相比,添加亲水胶后的蛋清凝胶黏度、储能模量和损耗模量增大明显(p<0.05),褐变强度增加了7.99%和33.21%;当黄原胶和魔芋胶的浓度由0.50%增加至1.50%,凝胶硬度值提高49.60%和119.56%,穿刺强度提高20.59%和78.42%,持水性提高1.02%和9.47%,且添加黄原胶的蛋清凝胶硬度、穿刺强度和持水性均显著大于魔芋胶(p<0.05)。两种胶的浓度均为1.00%时,蛋清凝胶的感官评分最高。两种亲水胶的加入会改变蛋白质的二级结构及凝胶内部的分子间作用力:黄原胶量的增加显著降低了离子相互作用(p<0.05),无规则卷曲减少了41.23%,α-螺旋增加了81.29%;魔芋胶量的增加显著降低了疏水相互作用(p<0.05),β-折叠减少了34.97%,无规则卷曲和α-螺旋分别增加了68.97%和70.37%;氢键和二硫键均随两种胶浓度的增加而增强。综上所述,添加黄原胶和魔芋胶均能抑制碱诱导蛋清凝胶在高温处理过程中的液化现象,且加入黄原胶所形成的凝胶质构特性和持水性优于魔芋胶,而魔芋胶对于凝胶褐变强度的影响大于黄原胶。  相似文献   

16.
This research investigated the multi-scale characteristics of potato starch gel (PSG) with different addition ratios of xanthan gum (XG) and locust bean gum (LBG). These characteristics are closely related and had significant impacts on 3D printing performance. Both xanthan gum and locust bean gum were able to increase the apparent viscosity, storage modulus (G′) and loss modulus (G″) of the blended gel system to varying degrees. Large amplitude oscillation shear (LAOS) was used to detect slight rheological differences led by microstructure changes. The critical strain values of the blended gel system rose as the addition ratio of locust bean gum increased. At the same time, the elastic and viscous Lissajous curves could characterize the viscoelastic changes under large strains. Fourier transforms infrared spectroscopy (FT-IR) illustrated that locust bean gum could strengthen the hydrogen bonds so that the gel had stronger mechanical properties compared with the addition of xanthan gum. Scanning electron microscopy (SEM) could observe the changes in the microstructure of the blended gel systems with addition of different addition ratios of gums. From the perspectives of 3D printing results and data analysis, the appropriate amount of xanthan gum improved the fineness and fluidity of the gels by virtue of its lubricating and coating characteristics, while the locust bean gum enabled them to have stronger shape retention abilities and better performances of resisting compressed deformation.  相似文献   

17.
The knowledge of starch pastes behavior during frozen storage becomes necessary to understand more complex systems (e.g. sauces, dressings and desserts) The effect of sub-zero storage on the quality attributes of corn starch pastes (10% w/w) with and without xanthan gum (0.3% w/w) was analyzed. Pastes were frozen at different rates (0.3 to 270cm/h) and stored at −5, −10 and −20°C. Exudate production (syneresis) and rheological behavior were studied by means of capillary suction and rotational viscometry respectively. Ice recrystallization was analyzed by indirect microscopic observations using isothermal freeze fixation and amylopectin retrogradation by differential scanning calorimetry (DSC). Samples stored at −5°C (glass transition temperature) or higher temperatures were under the rubbery state evidenced by starch recrystallization. This state favored molecular mobility leading to deteriorative changes (like spongy structure formation related to amylose retrogradation). At lower storage temperatures (−10 and −20°C) under the glassy state, starch retrogradation was not detected and deteriorative changes can be related to ice recrystallization. The addition of xanthan gum minimized amylose retrogradation, syneresis and rheological changes, however, its presence did not prevent ice recrystallization nor amylopectin retrogradation.  相似文献   

18.
研究了不同食品胶(海藻酸钠、黄原胶、羧甲基纤维素钠、刺槐豆胶和羟丙基甲基纤维素)对面包烘焙特性的影响。结果表明,添加适量的食品胶可以有效提高面包的焙烤品质,增大面包的比容,提高面包的整体接受度,改善面包的质构特性,增加面包的弹性和内聚性,显著降低面包的硬度和咀嚼性,有较好的抗老化效果,延长产品的货架期。海藻酸钠和羟丙基甲基纤维素改善效果最好,黄原胶改良效果最差。  相似文献   

19.
Lo CT  Ramsden L 《Die Nahrung》2000,44(3):211-214
Three starches (maize, rice and wheat), and the two non-starch polysaccharides xanthan and locust bean gum galactomannan (LBG) were examined in gel and dough systems for texture and stability properties during freezing and low temperature storage. Xanthan and LBG were found to confer increased resistance to freeze/thaw cycling on rice starch gels but the non-starch polysaccharides had little effect on the performance of maize and wheat starch gels or on wheat dough.  相似文献   

20.
Response surface methodology was used to predict sensory attributes of a nongluten pasta and develop response surface plots to help visualize the optimum region. Optimum regions of xanthan gum, modified starch, and locust bean gum were selected by overlapping the contour plots of sensory properties of nongluten pasta as compared with the control pasta. The formula of nongluten pasta that possessed the most desirable properties was xanthan gum at 40 g, modified starch at 35 g, locust bean gum at 40 g, tapioca starch at 113 g, potato starch at 57 g, corn flour at 250 g, and rice flour at 50 g. The quality of nongluten pasta could be improved by using different levels of nongluten starches and flours, and nonstarch polysaccharides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号