首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
超声波协同复合酶法提取香菇多糖的工艺优化   总被引:1,自引:0,他引:1  
优化超声波协同复合酶法提取香菇中多糖成分的工艺。以香菇多糖提取率为评价指标,采用单因素试验和正交试验,确定最佳提取工艺参数。结果表明,超声波提取优化工艺条件为:料液比1∶15(g/mL),超声温度70℃,超声时间12 min。在此最佳超声提取条件下香菇多糖提取率为8.97%。在超声波优化的基础上,进行复合酶处理,最佳酶解工艺参数为:酶解时间50 min,复合酶(木瓜蛋白酶∶纤维素酶∶果胶酶=1∶1∶1,质量比)添加量3%,酶解温度60℃,酶解pH5.5,在此优化条件下香菇多糖提取率为12.46%。  相似文献   

2.
以仙人草为原料,采用超声辅助酶解法提取仙人草多糖。通过单因素法考察了单一酶种类和浓度、复合酶浓度和配比、酶解温度、酶解时间、酶解pH值对多糖提取率的影响。利用正交实验优化了超声辅助酶解法提取仙人草多糖的工艺条件。结果表明,超声波辅助酶解法提取仙人草多糖的最佳提取条件为复合酶(纤维素酶∶果胶酶=1∶1)浓度5%、酶解温度50℃、酶解时间2 h、酶解pH值7,在此条件下仙人草多糖的提取率为6.60%。  相似文献   

3.
研究了采用复合酶协同高压热水浸提法从香菇中提取活性多糖的最适条件。通过单因素试验和正交试验,探讨了料液比、酶添加量、酶解时间、酶解温度和酶解p H对香菇多糖提取率的影响,并以香菇多糖提取率为评价指标,优化提取工艺。试验结果表明,复合酶协同高压热水浸提法提取香菇多糖的最适条件为:料液比为1∶40(g/m L),酶添加量为1%,反应70 min,酶解温度为60℃,p H为3。  相似文献   

4.
陈灼娟  周倩  杨志强 《中国调味品》2023,(3):199-203+215
以黑皮鸡枞菌子实体为试验材料,研究复合酶法提取黑皮鸡枞菌多糖的最佳工艺条件,并测定黑皮鸡枞菌多糖的抗氧化活性。分别考察复合酶比例、液料比、复合酶添加量、酶解温度、酶解pH、酶解时间对多糖提取率的影响,根据单因素试验结果,设计响应面试验优化提取工艺。通过测定DPPH自由基清除率、羟基自由基清除率评价黑皮鸡枞菌多糖的抗氧化活性。黑皮鸡枞菌多糖提取条件确定为:以纤维素酶∶果胶酶∶木瓜蛋白酶为4∶3∶3制备复合酶,复合酶添加量3.0%,液料比47∶1 (mL/g),酶解温度54℃,酶解pH 7.5,酶解时间73 min,此时,多糖提取率达18.75%。黑皮鸡枞菌多糖浓度为4.0 mg/mL时,DPPH自由基清除率、羟基自由基清除率分别达93.44%、47.58%,表现出较强的抗氧化活性。复合酶提取黑皮鸡枞菌多糖的方法具有较高的多糖提取率及抗氧化活性。该方法可以为黑皮鸡枞菌多糖的开发和利用提供理论依据和新的思路。  相似文献   

5.
为了获得复合酶法提取红雪茶粗多糖的最佳工艺,采用单因素实验和正交实验,研究了不同料液比、pH、酶解温度、提取时间和不同复合酶配比对红雪茶粗多糖提取率的影响;在此基础上采用L9(34)正交实验研究了各影响因素对红雪茶粗多糖提取率的影响,结果表明复合酶最佳配比为纤维素酶2.0%,果胶酶2.0%,木瓜蛋白酶0.5%;影响红雪茶粗多糖提取率的四个因素的主次顺序为:料液比>酶解温度>pH>酶解时间;最佳提取工艺条件是料液比1:40,pH4.5,酶解温度40℃,酶解时间80min,在此条件下红雪茶多糖提取率达8.91%。本研究确定了复合酶法提取红雪茶多糖的最佳工艺。  相似文献   

6.
该文研究高压脉冲电场耦合复合酶法提取莼菜多糖最佳工艺条件。以莼菜多糖提取率为指标,采用单因素试验和正交试验,确定最佳工艺参数。结果表明,高压脉冲电场提取最佳工艺参数为:料液比1∶30(g/mL),提取时间40 min,电场强度25 kV/cm,脉冲数6。在此条件下莼菜多糖提取率为10.75%。在高压脉冲电场提取后,再耦合复合酶法提取,最佳酶解工艺参数为:复合酶(木瓜蛋白酶∶纤维素酶∶果胶酶为1∶1∶1,质量比)添加量2.5%,酶解pH4.5,酶解时间60 min,酶解温度40℃,在此优化条件下莼菜多糖提取率为12.27%。与单一的高压脉冲电场提取相比,高压脉冲电场耦合复合酶法提取莼菜多糖的提取率明显提高,为莼菜多糖的提取提供一种新的方法。  相似文献   

7.
罗凯  黄秀芳  周毅峰  张弛 《食品科学》2017,38(4):237-242
利用人工种植的碎米荠为原料,研究其粗多糖的提取工艺参数及抗氧化活性。首先对提取条件的单因素进行优化,在单因素试验基础上,进行提取条件的响应面优化。单因素优化条件为:质量分数2%复合酶(m(纤维素酶)∶m(果胶酶)=2∶1)、酶解时间90 min、酶解温度60℃、酶解pH 4.0。响应面优化结果为:酶解时间91.8 min、酶解温度57.1℃、酶解pH 4.17。在此条件下,碎米荠粗多糖提取率最高,粗多糖提取率预测值为4.14%,验证实验得到实际粗多糖的平均提取率为4.07%;与理论预测值相比,其相对误差约为1.62%。抗氧化活性研究结果显示,碎米荠多糖具有抗氧化活性,且效果优于VC。该实验结果为碎米荠多糖的提取以及多糖的性质研究提供理论依据。  相似文献   

8.
复合酶解法优化黄精多糖提取工艺   总被引:2,自引:0,他引:2       下载免费PDF全文
采用复合酶解法优化黄精多糖提取工艺,苯酚-浓硫酸显色法测定黄精多糖质量浓度,以黄精多糖提取率为指标,对复合酶种类和配比进行筛选后,在单因素试验基础上,考察酶解温度、pH、料液比、加酶量对提取率的影响,并通过正交试验进行优化。结果表明,复合酶提取优于单酶提取和普通水提。酶用量配比为纤维素酶:木瓜蛋白酶=3∶7。酶解最佳条件为:pH值5.0,酶解温度50℃,料液比(g/mL)1∶20,加酶量1.5 g/dL,即纤维素酶0.45 g/dL,木瓜蛋白酶1.05 g/dL,酶解2 h后,沸水浸提2 h。在此工艺条件下,黄精多糖提取率可达21.55%,是普通水提法得率的2.75倍,比单酶水解高出12.06%。  相似文献   

9.
对啤酒花精油超声波辅助水酶法提取工艺进行了研究,通过单因素试验,运用Plackett-Burman试验设计、最陡爬坡试验结合Box-Behnken设计对提取工艺进行响应曲面优化。评价了复合酶量(木瓜蛋白酶∶纤维素酶∶果胶酶=1∶1∶1,质量比)、料液比、酶解温度、酶解时间、酶解pH、超声波功率、超声波时间7个因素对啤酒花精油提取率的影响。用中心组合设计及响应面分析法确定最优条件为:复合酶添加量3.0%、酶解温度50℃、酶解时间2.5 h、酶解pH5,实际啤酒花精油提取率为5.27%。  相似文献   

10.
该文主要以始兴黄精为原料,纯净水为提取溶剂,采用超声波辅助酶法提取黄精多糖,通过单因素试验研究复合酶添加量、酶解时间、酶解温度和料液比等因素对黄精多糖提取率的影响,并对其最佳工艺进行正交试验优化。结果表明,超声波辅助酶法提取黄精多糖的最佳工艺条件为:复合酶添加量6%、酶解温度65℃、酶解时间55 min、料液比1∶30(g/mL),在此工艺条件下得到黄精多糖的提取率为25.63%。  相似文献   

11.
超声波辅助酶法提取北五味子多糖工艺研究   总被引:3,自引:0,他引:3  
建立了超声波辅助复合酶(纤维素酶/蛋白酶/果胶酶=1∶1∶1)提取北五味子多糖的方法。以多糖的提取率为研究指标,通过设计正交试验和响应面优化试验,对超声波辅助复合酶法提取北五味子多糖的工艺进行了优化。确定最佳工艺条件为酶解温度45℃,缓冲液pH 4.6,复合酶用量2%,酶解时间为2.0h,超声波功率166W,萃取温度56℃,萃取时间39 min。在此最佳条件下,北五味子多糖提取量达到105.36mg/g。超声波辅助复合酶法应用到多糖的提取领域,节省了时间,降低了溶剂消耗,且明显提高了多糖的提取率,该法操作方便,简单易行,为北五味子多糖工业化生产提取提供了理论依据。  相似文献   

12.
采用复合酶法提取平菇中的水溶性多糖,为获得最优酶解条件,通过单因素试验和正交优化试验研究酶浓度、酶解温度、酶解时间、酶解pH值对多糖得率的影响。确定复合酶法提取平菇水溶性多糖的最优条件为:酶浓度2.0%、酶解时间3h、酶解温度50℃、多糖得率为6.78%,提高了平菇多糖的得率。  相似文献   

13.
研究复合酶提取芦荟多糖的工艺,并测定其抗氧化性。在单因素试验的基础上,利用响应面法对复合酶提取芦荟多糖的条件进行了优化,通过测定芦荟多糖的总抗氧化能力、DPPH自由基和羟自由基清除能力研究其抗氧化性。结果显示,当料液比1∶30(g/mL)、果胶酶与纤维素酶配比1∶3、pH 4.5时,优化最佳提取条件为加酶量0.3%、酶解温度48 ℃、酶解时间40 min,此条件下芦荟多糖的提取率为5.65%,和超声波辅助法相比提取率提高了4.2%。芦荟多糖具有较好的抗氧化性,随着质量浓度的增加,其总抗氧化能力、DPPH自由基和羟自由基清除能力逐渐增强,在25 mg/mL时其DPPH自由基和羟自由基清除率分别达到75%和90%。复合酶法是一种新的、有效的芦荟多糖提取方法;芦荟多糖具有较好的抗氧化性。  相似文献   

14.
纤维素酶辅助提取茶树菇多糖的研究   总被引:4,自引:1,他引:3  
通过单因素及正交试验研究纤维素酶酶解辅助提取茶树菇子实体多糖的最佳工艺。研究结果表明:水浴提取茶树菇子实体多糖料液比为1∶60,提取时间120m in,温度为60℃时提取效果最佳;纤维素酶酶解辅助提取茶树菇子实体多糖,料液比为1∶80,酶浓度1.5%,浸提液pH 6.0,提取温度50℃。对2种提取法进行了比较,水浴法提取茶树菇多糖的平均提取率为1.40%;纤维素酶酶解辅助提取茶树菇多糖的平均提取率2.38%,比水浴法提高了70.47%。纤维素酶酶解辅助提取茶树菇多糖明显优与水浴法。  相似文献   

15.
以液体发酵培养的亮菌菌丝体为原料,利用纤维素酶和中性蛋白酶复合酶法提取菌丝体胞内多糖。结果表明,复合酶法提取可以提高亮菌多糖的提取率,通过单因素试验和正交试验,复合酶提取多糖的最适条件是料液比为1∶40加酶量为2%,pH值为5.5,提取温度为45℃,提取时间是1h,然后加中性蛋白酶,加酶量为1.2%,pH值为7.2,酶解温度为55℃,酶解时间是2.5h。紫外光谱分析表明,亮菌多糖经过3次脱蛋白在波长200nm~400nm处没有明显的吸收峰。  相似文献   

16.
以云南滇红茶为试验材料,采用响应面法优化生物酶法探讨其茶多糖提取工艺。在复合酶添加量、复合酶种类、复合酶比值、酶解时间、酶解温度、料液比各因素的单因素试验基础上,以茶多糖提取率为响应值,通过Box-Behnken中心组合优化法优化提取工艺参数,选取提取时间、复合酶添加量和料液比构建三因素三水平响应面优化试验。结果表明,滇红茶多糖的最佳工艺条件:复合酶种类为果胶酶和纤维素酶(质量比2∶1),复合酶添加量为0.90%(以底物质量计算),提取时间为3.0 h,提取温度45℃,料液比为1∶20(g/mL)。该条件下茶多糖提取率为4.22%±0.17%,与模型预测相符,可用于复合酶法提取滇红茶多糖。  相似文献   

17.
为确定复合酶(纤维素酶、果胶酶、中性蛋白酶)提取松茸多糖的最佳工艺,并对其体外抗氧化活性进行初步研究,在单因素试验的基础上,以料液比、pH值、酶解时间和酶解温度为影响因素,利用Box-Behnken方法进行四因素三水平试验设计,以多糖提取率为响应值,进行响应面分析;分别用邻苯三酚自氧化法和对DPPH自由基的清除作用测定松茸多糖的体外抗氧化性。结果表明:多糖提取的最佳工艺为料液比1∶40(g/mL)、pH 5、酶解温度35 ℃、酶解时间71 min,松茸多糖的提取率预测值为7.06%,验证值为6.95%,与预测值相对误差为1.56%;松茸多糖对超氧阴离子自由基和DPPH自由基具有较强的清除作用,其IC50值分别为0.565 mg/mL和0.454 mg/mL。因此,复合酶法提取松茸多糖高效、简单,可用作松茸多糖的提取工艺;松茸多糖具有明显的体外抗氧化活性。  相似文献   

18.
香菇多糖的酶法提取   总被引:1,自引:0,他引:1  
利用果胶酶、纤维素酶和漆酶对香菇进行酶解,固定料水比(1∶15)和反应温度(40℃),以酶解后多糖提取率为指标,考察不同浓度的3种酶对香菇多糖提取的影响。在单因素试验的基础上,采用响应面法建立香菇多糖酶法提取的二次多项数学模型,并验证了该模型的有效性;探讨了果胶酶、纤维素酶、漆酶3个因子的交互作用及其最佳水平。响应面分析结果表明:果胶酶、纤维素酶、漆酶显著影响香菇多糖的提取效果,在果胶酶浓度为7.11%,纤维素酶浓度为6.82%,漆酶浓度为3.69%的优化条件下,香菇多糖的提取率达到37.07%。  相似文献   

19.
以洋葱为原料,采用复合酶(纤维素酶、木瓜蛋白酶和中性蛋白酶)酶解法提取洋葱多糖。考察复合酶用量、时间、温度、pH值、料液比等因素对洋葱多糖的纯度和收率的影响。通过单因素试验与正交试验优化复合酶提取洋葱多糖的工艺。结果表明:复合酶用量为0.3%,酶解温度为50℃,酶解时间为75 min,缓冲溶液pH值为6.0,料液比为1∶35(g/mL)时,多糖收率为18.75%,纯度达62.00%。  相似文献   

20.
酶法提取香菇多糖工艺研究   总被引:6,自引:0,他引:6  
李波  宋江良  赵森  周崇  刘倩倩 《食品科学》2007,28(9):274-277
本实验将木瓜蛋白酶和纤维素酶应用于香菇多糖的提取,研究了酶法提取的工艺条件。结果显示,木瓜蛋白酶的最佳酶解条件是:酶浓度0.5%,酶解温度50℃,pH6~7,酶解反应1h;纤维素酶的最佳酶解条件是:酶浓度0.25%,酶解温度40℃,pH4.5~5.0,酶解反应1h。采用酶水解后,香菇多糖的提取率显著提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号