首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
为了资源化利用油菜秸秆等废弃物,以油菜秸秆和凹凸棒石为原料,以酚醛树脂为黏结剂,通过复合、热压、烧结等工艺过程制备了凹凸棒石/油菜秸秆木质陶瓷.对不同原料质量配比和烧结温度下制备的复合材料进行性能测试.结果表明,采用该工艺制备凹凸棒石/油菜秸秆木质陶瓷是可行的,原料的选择、质量配比、烧结温度等参数对材料制备过程及性能均有较大的影响.油菜秸秆与凹凸棒石质量配比为1:2时复合材料的力学性能较好,烧结温度在600~700℃时,残炭率最高;在600~800℃范围内,抗弯强度的提高达到最佳;在800℃时,导电性能得到改善.  相似文献   

2.
以凹凸棒土、电气石为主要原料,采用可塑成型法和低温烧结法制备凹凸棒石吸附功能陶瓷材料。考察不同物料配比及烧结温度对材料性能如吸水率、收缩率及抗折强度等的影响。通过XRD和SEM表征凹凸棒石功能材料在低温下的晶型转变和微观结构,并测试样品亚甲蓝饱和吸附量(吸蓝量)评价其吸附性质。实验结果表明:当电气石和凹凸棒土的质量配比为30∶70时,在800℃烧结温度下,可制备出吸水率为34.53%、抗折强度为3.2MPa的凹凸棒石吸附功能陶瓷材料,符合国家过滤废水用陶瓷球性能指标。  相似文献   

3.
凹凸棒石-针铁矿改性麦秸木质陶瓷的微观结构   总被引:1,自引:0,他引:1       下载免费PDF全文
以凹凸棒石、针铁矿和小麦秸秆为原料,添加少量的环氧树脂作为黏结剂,在适宜的温度和气氛下煅烧,同步完成了生物质碳化、凹凸棒石热活化及针铁矿的还原,获得了具有高气孔率和强磁性的凹凸棒石-针铁矿改性麦秸木质陶瓷,利用XRD和SEM分析了原料质量比及焙烧温度对其物相及微观结构的影响。结果表明:凹凸棒石-针铁矿改性麦秸木质陶瓷是一种非晶态多孔质碳素材料,在相同温度下,原料的质量比对其物相几乎无影响;随着焙烧温度的升高,凹凸棒石的特征衍射峰逐渐消失,凹凸棒石-针铁矿改性麦秸木质陶瓷中有新的物相产生。  相似文献   

4.
以比表面积分别为4.26和17.4 m2/g两种AlN粉末为原料,添加5%Y2O3作为烧结助剂制备AlN-15BN陶瓷(质量分数,%),研究了AlN粉末特性对复合陶瓷致密化过程的影响。结果表明,AlN粉末比表面积对复合陶瓷致密化有重要影响,比表面积高的AlN粉末所制备的复合陶瓷致密化过程主要发生在1500~1650℃,1650℃烧结3 h后,复合材料的相对密度达95.6%,继续升高温度,对材料的密度影响不大;而低比表面积的AlN粉末所制备的复合陶瓷的致密化过程主要发生在1650~1850℃,1850℃烧结3 h,复合陶瓷的相对密度为86.4%。即高比表面积的AlN粉末有利于获得相对密度高的AlN-BN复合材料。  相似文献   

5.
以红柱石和氧化铝为主要原料、聚苯乙烯粒子为造孔剂,通过烧结法制备莫来石泡沫陶瓷,借助XRD和SEM分析了烧成温度和骨料配比对获得莫来石相组成和结构的影响规律,并通过正交试验,探讨烧结温度、造孔剂加入量和骨料配比等工艺参数对制备莫来石泡沫陶瓷性能的影响.结果表明:造孔剂加入量对密度和强度的影响较大,烧结温度次之,骨料配比最小;最佳的因素水平为烧结温度1 450 ℃,EPS质量分数5%,骨料质量比m(红柱石)∶m(氧化铝)=80∶20,此时表观密度为0.52 g/cm3,抗折强度0.36 MPa.  相似文献   

6.
无压烧结制备高致密度AlN-BN复合陶瓷   总被引:6,自引:0,他引:6  
以低温燃烧合成前驱物制备的比表面积为17.4m2/g的AlN粉末和市售BN粉末为原料, 利用无压烧结工艺制备AlN-15BN复合陶瓷, 研究了复合陶瓷的烧结行为以及制备材料的性能, 结果表明: 由于AlN粉末的烧结活性好, 复合材料的烧结致密化温度主要集中在1500~1650℃之间, 在1650℃烧结后, AlN-15BN复合陶瓷的相对密度可达95.6%. 继续升高烧结温度, 材料的致密度变化不大, 热导率继续增加. 在1850℃烧结3h后, 可以制备出相对密度为96.1%, 热导率为132.6W·m-1·K-1, 硬度为HRA64.2的AlN-15BN复合陶瓷. 提出了高比表面积的AlN粉末促进复合陶瓷烧结的机理, 利用XRD, SEM等手段对烧结体进行了表征.  相似文献   

7.
制备工艺是调控石墨烯/陶瓷复合材料结构、优化其力学和热电等性能的关键.重点综述了石墨烯/陶瓷复合材料的粉末压坯烧结工艺和3D打印工艺及其研究进展.粉末压坯烧结工艺包括无压烧结、热压烧结、放电等离子烧结、微波烧结和高频感应加热烧结等,具有工艺简单、材料性能好、制备参数易控制等优点,是石墨烯/陶瓷复合材料的主要制备工艺,用于制备致密的块体复合材料;主要3D打印工艺有直写成形、激光选区烧结、喷墨打印和立体光固化等,具有结构和形状可控的特点,是目前石墨烯/陶瓷复合材料的研究热点,用于成形复杂形状和特定性能的复合材料器件.另外,还简要介绍了原位生成法、碳热还原法等利用特定物理化学反应制备石墨烯/陶瓷复合材料的制备工艺,并综述了石墨烯在复合材料中的分散工艺.  相似文献   

8.
高韩锋  王家滨  马林 《材料导报》2016,30(Z1):428-431
以SiO_2微粉、SiO_2气凝胶、石英纤维为主要原料,通过改变原料配比,采用半干法成型制备了SiO_2复合隔热多孔材料,通过X射线衍射分析(XRD)、扫描电子显微镜(SEM)等测试方法,研究了不同烧结温度(400~1000℃)对复合SiO_2隔热多孔陶瓷的物相组织、显微结构及物理性能的影响。结果表明当烧结温度升高至800℃时,试样保持着最佳的综合性能:其显气孔率为43.33%、体积密度为1.22g/cm3、抗折强度为2.05MPa、耐压强度为17.30 MPa,试样中均匀分布着大量呈球型、孤立的亚微米级气孔。  相似文献   

9.
本工作制备了一种具有互穿网络结构的新型泡沫陶瓷/硼酚醛树脂复合材料,采用有机泡沫浸渍法和惰性气氛烧结制备了莫来石/碳化硼骨架增强体,采用负压浸渍和原位热固化方法制备了碳化硼/硼酚醛树脂基体。实验探究了微粉含量(碳化硼和高岭土各10%~30%)和烧结温度(1 300~1 500℃)对陶瓷骨架和复合材料的影响;当烧结温度设置为1 350℃,粉体原料质量占比设置为氧化铝55%、碳化硼15%、高岭土25%、二氧化钛5%时,烧结而成的陶瓷骨架与20%(质量分数)碳化硼/硼酚醛树脂的填充材料形成新型中子屏蔽复合材料,其综合性能可达到最优化;此时,泡沫陶瓷骨架线收缩率为3.36%,堆积密度为0.54 g/cm3,显气孔率为73.7%,骨架抗压强度为0.94 MPa;陶瓷/硼酚醛树脂复合材料显气孔率为0.2%,堆积密度为1.22 g/cm3,抗压强度为86 MPa; 300℃保温10 h冷却后,残余抗压强度为54 MPa,抗压残余比为62%,服役温度为180~330℃;10%(质量分数)硼酸溶液浸泡72 h后,失重率为0.31%,残余抗压强度为82.5 MP...  相似文献   

10.
以金属Mo粉、Si粉和Al粉为原料,采用反应烧结法制备MoSi_2/Al_2O_3陶瓷复合材料,有效增强其室温韧性和强度,并揭示其电阻率随烧结温度变化规律。利用XRD和SEM分析不同温度烧结后MoSi_2/Al_2O_3复合材料试样的物相组成和微观结构;研究不同烧结温度下试样的力学和电学性能。结果表明:在氩气保护气氛下1 200℃时,MoSi_2/Al_2O_3陶瓷复合材料的各项性能较好,其显气孔率为20.7%,体积密度为4.8g/cm~3,断裂韧性值为9.72MPa·m1/2,电阻率为6.0×10~(-2)Ω·cm。所制备的MoSi_2/Al_2O_3陶瓷复合材料物相结构主要由Al_2O_3包覆MoSi_2形成的连续包覆相组成,组织结构均匀。烧结温度为1 200℃时,MoSi2导电相由弥散分布变成相互连接的网络状分布,且Al_2O_3包覆MoSi_2导电相的包覆层变薄,包裹的MoSi_2颗粒之间易于突破包覆相而互相连通,有助于降低电阻率。  相似文献   

11.
采用微波烧结的方法,在烧结温度分别为680℃,710℃,740℃,770℃,800℃制备了15%的SiCp/Al复合材料。探讨温度对材料的致密度和力学性能的影响。结果表明:致密度和材料硬度及冲击韧性随温度变化呈马鞍形,在770℃样品的密度和硬度及冲击韧性达到最佳值,分别为2.62g/cm3,42.6MPa,40J/cm2。结论:用微波烧结SiCp/Al复合材料可在短时间内使样品达到烧结致密化,缩短烧结时间,节约能源。  相似文献   

12.
以板状刚玉为骨料,莫来石为结合相,并以高岭土和无定型SiO2微粉作为合成莫来石的硅源,采用反应烧结工艺制备莫来石结合刚玉耐火材料,旨在降低莫来石的烧结成本及获得理想的显微结构.研究表明:以高岭土为硅源,莫来石生成量低于理论量,但生成温度较低,1550℃前已完成莫来石化反应,显微结构较均匀,烧结程度较好,莫来石呈长柱状;...  相似文献   

13.
采用Ar氛烧结碳化法在600℃、700℃、800℃及900℃下制备了基于氧化石墨烯(GO)/壳聚糖复合材料的超级电容器电极材料。通过XRD、SEM、FTIR及循环伏安等电化学手段,系统评价了碳化的GO/壳聚糖复合材料作为超级电容器电极材料的可能性。通过与文献报道的纯壳聚糖碳化材料的相关性能进行比较,结果表明:碳化GO/壳聚糖复合材料力学性能较纯壳聚糖碳化材料提高约67%,而且具有良好的电容器材料的性质。800℃碳化GO/壳聚糖复合材料样品的比电容达131 F/g,1 500次充放电后比电容保持率达97%。  相似文献   

14.
反应烧结法制备(AlN,TiN)-Al2O3复合材料的研究   总被引:3,自引:1,他引:2       下载免费PDF全文
以Ti,Al,Al2O3为初始粉料,通过750~800℃氮气保护下的中温焙烧,然后在1420~1550℃在氮气氛下反应烧结,制备了不同配比的(AlN,TiN)-Al2O3复合材料。研究了组成及烧结工艺对复合材料力学性能、显微结构等的影响。用XRD,SEM等方法分析粉体及烧结体的相组成及微观结构。分析结果表明:AlN,TiN的形成,有助于材料的致密化并使其力学性能提高。组成为20wt%(Al,Ti)-Al2O3的粉体在1520℃、30MPa、保温、保压30min热压烧结条件下,与N2气反应可得到硬度(HRA)为 94.1的高硬度的(AlN,TiN)-Al2O3复合材料,该材料的抗弯强度为687 MPa,断裂韧性(KIC)为6.5MPa·m1/2。  相似文献   

15.
改性天然磷灰石废水处理剂的造粒研究   总被引:2,自引:0,他引:2  
探讨了改性天然磷灰石废水处理剂的造粒方法及其影响因素。试验表明 :在烧结温度一定时 ,造粒颗粒的强度随粘结剂 (粘土 )加入比例的增加而增加 ;当加入粘结剂粘土比例一定时 ,造粒颗粒强度随烧结温度的升高而增加 ,而造粒颗粒的比表面积却随烧结温度的升高 ,先缓慢升高 (低于 70 0℃ )再缓慢下降 (70 0~ 80 0℃ ) ,烧结温度高于 80 0℃时烧结颗粒的比表面积下降较快 ,烧结温度达 12 5 0℃时 ,造粒颗粒的比表面积几乎为零。造粒颗粒的吸附试验表明 :改性天然磷灰石废水处理剂造粒后对废水中Pb2 +仍然具有良好的吸附性能  相似文献   

16.
温度对爆轰法合成纳米氧化铝晶型及晶粒度的影响   总被引:1,自引:0,他引:1  
用爆轰法合成了纳米γ氧化铝粉体。对粉体分别进行从室温加热到600℃、800℃、900℃、1000℃、1100℃和1300℃的煅烧处理,对煅烧样品进行了X射线衍射分析,研究了不同煅烧温度下,纳米氧化铝的晶粒度。结果表明,随煅烧温度的升高,纳米氧化铝经历了从γ型转变成δ型,再转变成θ型,最后完全转变成α型纳米氧化铝的过程。随着加热温度的升高,纳米氧化铝出现了晶粒细化现象,且晶粒细化有两个过程,细化程度最大的温度区间为800~1000℃。  相似文献   

17.
采用金属钛粉和碳化硼为初始粉料,利用SPS放电等离子烧结技术制备了致密的纳米结构TiB2/TiC复合材料.并借助XRD、SEM考察了复合材料的相组成和显微结构,利用压痕法和小样品力学性能测试方法(MSP)测定了室温显微硬度、断裂韧性和MSP强度.研究结果表明:利用一步法直接升温至1550℃并保温6 min制备的复合材料,其晶粒尺寸大于1μm,MSP强度为833 MPa.而采用两步法升温至1550℃,然后迅速降低保温温度至1450℃,并保温6 min条件下使金属钛粉和碳化硼同步完成反应、烧结、致密化,生成晶粒细小的TiB2/TiC复合材料,晶粒尺寸大约为200 nm,并且所制备的复合材料力学性能更好,MSP强度达到1095 MPa.  相似文献   

18.
坡缕石/聚丙烯酸(钠)高吸水复合材料的溶胀行为   总被引:5,自引:2,他引:3  
以水溶液聚合法制备了坡缕石/聚丙烯酸(钠) (PAANa)高吸水复合材料,对复合材料的吸水溶胀性能进行了研究,并采用FTIR对复合材料进行表征。结果表明:10 %坡缕石/PAANa复合材料吸蒸馏水和0.9 wt%盐水倍率分别达1666g/g、115g/g,较纯PAANa的724g/g、58g/g明显提高;坡缕石/PAANa复合材料具有优异的保水及反复吸水性能;坡缕石/PAANa的吸液倍率随电解质溶液离子强度的升高而降低,降低程度顺序为 Al3+>Ca2+>Na+;坡缕石/PAANa复合材料与其他6种矿物/PAANa复合材料相比,吸液性能特别是吸蒸馏水及0. 9 wt%盐水性能大幅提高。  相似文献   

19.
陶瓷结合立方氮化硼磨削工具材料制备研究   总被引:3,自引:1,他引:3       下载免费PDF全文
陶瓷结合立方氮化硼(CBN)磨削工具是一类用于磨削加工的新型陶瓷/玻璃复合材料。本文作者从复合材料制备理论角度探讨了这类材料的制备原则,并进行了试验研究。研究结果表明:CBN磨具的烧成温度以低于800℃为宜;陶瓷结合剂与CBN磨料的热膨胀系数匹配性对磨具强度有较大影响,具有较小热膨胀系数和较高强度的C1结合剂较适合CBN磨具制备。在一定温度范围内,适当提高烧结温度,有利于提高陶瓷结合剂桥相本身强度及结合剂与CBN磨料颗粒的结合强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号