首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 46 毫秒
1.
为提高壳聚糖支架材料的孔隙率及矿化程度,通过磷酸化表面改性和仿生矿化制备了磷酸化(PCSW)和生物矿化(BMCW)木垛型壳聚糖多孔支架.FTIR结果显示,壳聚糖分子中有磷酸根的引入.XRD结果表明,矿化24 h后支架上形成结晶度较高的磷酸钙盐晶体,矿化48 h后结晶度明显增加并形成单纯的羟基磷灰石(HA)结晶.SEM观察发现,在支架的内外表面均致密地沉积了HA晶体层.压缩强度测试结果表明,复合支架BMCW矿化48 h的压缩强度为(0.54±0.005) MPa,压缩模量为(5.47±0.65) MPa,BMCW可用作非承重骨组织修复材料.  相似文献   

2.
通过高碘酸钠的氧化以及基于席夫碱原理的阿仑膦酸缩合对支架表面进行功能化改性,最后通过仿生矿化的方式制备了一种新型的双磷酸根纤维素/羟基磷灰石三维复合支架。通过红外光谱仪、扫描电子显微镜、X射线衍射仪、X射线光电子能谱仪对磷酸化改性前后支架的矿化样品的组成、结构和形貌进行分析,结果表明改性后的凝胶支架表面沉积羟基磷灰石的含量、结晶度、晶粒尺寸、Ca/P元素比等,都更接近于天然骨骼中生物磷灰石晶体。细胞增殖毒性检测(CCK-8法)结果揭示了材料无细胞毒性,对矿化样品表面细胞的形貌分析表明,与未改性支架相比,细胞在复合支架上具有更高的活性以及更好的黏附性。因而,改性后的复合支架有望成为一种理想的支架材料。  相似文献   

3.
以1-(3-二甲氨基丙基)–3-乙基碳二亚胺为引发剂,N-羟基琥珀酰亚胺为催化偶联剂,将组氨酸接枝到壳聚糖上,通过改变组氨酸/壳聚糖的物质的量比及壳聚糖的相对分子质量制得不同取代度的N-组氨酸壳聚糖(NHCS)。利用红外光谱(FT-IR)、核磁共振(1H-NMR)、元素分析(EA)、热重分析(TGA)等进行表征。结果表明,随着组氨酸/壳聚糖的物质的量比增大,取代度增高,NHCS支架材料孔径增大,孔径尺寸分布在5μm~120μm之间,孔隙率均大于85%,可以满足组织工程支架材料的要求。随着pH增大,NHCS的Zeta电位从+13.5 mV降至-22.7 mV,表明其具有pH响应性。当组氨酸/壳聚糖的物质的量比为0.5时制得的NHCS支架材料孔径均一,可为生物矿化提供良好的模板。  相似文献   

4.
利用胆固醇琥珀酸单酯对壳聚糖进行仿生功能化修饰,并对改性后产物进行了红外与核磁表征。同时对所合成的一系列壳聚糖衍生物进行矿化行为研究,结果表明,经胆固醇琥珀酸单酯修饰后的壳聚糖具有诱导类骨磷灰石形成的效果;随着胆固醇修饰程度的提高,诱导类骨磷灰石形成的作用加强,且使所沉积的磷灰石呈现出类生物骨内的有序堆积。  相似文献   

5.
以魔芋葡甘聚糖(KGM)、透明质酸钠(SH)为主要原料,氨水为交联剂,制备SH/KGM多孔支架材料。将支架用钙盐溶液进行预钙化处理后,在模拟体液(Simulated body fluid,SBF)中浸泡仿生。仿生矿化后,对支架进行XRD、EDS、SEM分析。结果表明,仿生矿化后的SH/KGM多孔支架材料表面有圆球状羟基磷灰石颗粒沉积,且结晶度低、颗粒小;支架抗压强度及体外降解率均有相应的提高,是一种具有发展潜力的新型骨修复材料。  相似文献   

6.
首先采用原位沉析法制得仿木年轮结构的壳聚糖(Chitosan,CS)凝胶棒材,然后在此表面进行生物矿化交替沉积,得到羟基磷灰石(Hydroxyapatite,HA)涂层.经XRD测试,结果证明棒材表面确实生成了HA.SEM测试表明,HA层为多孔蜂窝状结构,孔径均一为2μm左右.CS棒材的水相接触角从沉积前的87°士5°提高到沉积后的105°士4°,棒材吸水率沉积HA后也有所降低,矿化后棒材仍然保持较高力学强度.上述结果表明,生物矿化后的CS棒材有望在骨移植和骨替代方面具有一定的应用价值.  相似文献   

7.
利用改性生物玻璃粉体和胶原、透明质酸钠、磷酸丝氨酸等天然生物分子复合制备仿生型三维多孔骨组织工程支架材料,利用体外模拟实验结合SEM、FTIR、XRD 等测试方法对材料的显微结构、生物矿化性能进行了综合研究,研究表明该材料具有良好的孔隙结构,在模拟生理溶液(SBF)中反应24h即可在支架表面形成碳酸羟基磷灰石(HCA).  相似文献   

8.
为了模拟天然骨组织的结构和成分, 以羟基磷灰石(HA)为钙磷源, 以壳聚糖(CS)为大分子基质材料, 在酸性环境中形成均相溶液, 通过Sol-gel相转变矿化方法和陈化处理, 原位构建了纳米HA/CS复合多孔支架材料, 研究了共沉积时体系的pH值和陈化时间对支架压缩强度、晶相组成及形貌等的影响。结果表明体系pH为10和11时, 支架的力学强度远高于未矿化壳聚糖支架强度, 但是随着体系pH的升高强度逐渐下降。XRD分析结果表明陈化处理有利于磷酸钙盐向HA转化, 随着陈化时间的延长, 纳米HA沿c轴择优生长。SEM观察显示支架材料具有相互贯穿的多孔结构, 纳米级的短棒状或颗粒状HA晶体颗粒均匀分散在孔壁上, 随着陈化处理以及陈化时间的延长, 形成致密的纳米无机/有机均匀复合体。这种快速深度矿化方法为骨支架材料的制备提供了新思路。   相似文献   

9.
为了克服壳聚糖只能溶于酸性水溶液的局限,对壳聚糖进行了化学修饰,通过引入磷酸基官能团,合成了可溶于中性水的磷酸化壳聚糖.以磷酸化壳聚糖和羧甲基壳聚糖为基材,采用聚电解质复合法制备了苦参碱/羧甲基壳聚糖/磷酸化壳聚糖纳米粒子水分散制剂.测试结果表明,纳米粒子的平均粒径为l00~200nm,纳米粒子对苦参碱的负载率最高可达66.2%.  相似文献   

10.
生物矿化在仿生材料领域的研究进展   总被引:1,自引:0,他引:1  
生物矿化重要的特征之一是无机矿物在细胞分泌的有机基质调节下成核和生长,最终形成具有特殊组装方式和多级结构特点的生物矿化材料,如骨、牙和贝壳等。仿生合成是近年来受生物矿化原理启示而发展起来的一个崭新领域,其合成过程具有高效、有序及自动化等特点。仿生合成材料是具有特殊性能的新型材料,有着潜在的广阔应用前景。综述了近年来在仿骨、仿牙和仿贝壳珍珠层等仿生材料、晶体工程、涂层及在防治病理矿化疾病等方面的研究进展。  相似文献   

11.
骨软骨缺损是导致关节发病和残疾的重要原因,骨软骨组织工程是修复骨软骨缺损的方法之一。骨软骨组织工程方法涉及仿生梯度支架的制造,该支架需模仿天然骨软骨组织的生理特性(例如从软骨表面到软骨下骨之间的梯度过渡)。在许多研究中骨软骨仿生梯度支架表现为离散梯度或连续梯度,用于模仿骨软骨组织的特性,例如生物化学组成、结构和力学性能。连续型骨软骨梯度支架的优点是其每层之间没有明显的界面,因此更相似地模拟天然骨软骨组织。到目前为止,骨软骨仿生梯度支架在骨软骨缺损修复研究中已经取得了良好的实验结果,但是骨软骨仿生梯度支架与天然骨软骨组织之间仍然存在差异,其临床应用还需要进一步研究。本文首先从骨软骨缺损的背景、微尺度结构与力学性能、骨软骨仿生梯度支架制造相关的材料与方法等方面概述了离散和连续梯度支架的研究进展。其次,由于3D打印骨软骨仿生梯度支架的方法能够精确控制支架孔的几何形状和力学性能,因此进一步介绍了计算仿真模型在骨软骨组织工程中的应用,例如采用仿真模型优化支架结构和力学性能以预测组织再生。最后,提出了骨软骨缺损修复相关的挑战以及骨软骨组织再生未来研究的展望。例如,连续型骨软骨仿生梯度支架需要更相似地模拟天然骨软骨组织单元的结构,即力学性能和生化性能的过渡更加自然地平滑。同时,虽然大多数骨软骨仿生梯度支架在体内外实验中均取得了良好的效果,但临床研究和应用仍然需要进行进一步深入研究。  相似文献   

12.
One challenge in soft tissue engineering is to find an applicable scaffold, not only having suitable mechanical properties, porous structures, and biodegradable properties, but also being abundant in active groups and having good biocompatibility. In this study, a three-dimensional silk fibroin/chitosan (SFCS) scaffold was successfully prepared with interconnected porous structure, excellent hydrophilicity, and proper mechanical properties. Compared with polylactic glycolic acid (PLGA) scaffold, the SFCS scaffold further facilitated the growth of HepG2 cells (human hepatoma cell line). Keeping the good cytocompatibility and combining the advantages of both fibroin and chitosan, the SFCS scaffold should be a prominent candidate for soft tissue engineering, for example, liver.  相似文献   

13.
原位水化法制备羟基磷灰石/壳聚糖复合支架材料   总被引:3,自引:0,他引:3  
以含Ca2+和PO34-的溶液为无机相,壳聚糖(chitosan,CS)溶液为高分子相,采用原位水化法制备羟基磷灰石(hydroxyapatite,HAP)/CS复合多孔支架材料。XRD和IR的表征和分析表明水化24h后,复合支架中的钙磷盐从磷酸氢钙(dicalciumphos phate dehydrate,DCPD)转化为HAP。SEM和EDS显示15μm左右的棒状HAP颗粒均匀地分散在多孔支架的孔壁上,压缩强度的测试结果表明这种结构显著提高复合支架的力学性能。  相似文献   

14.
为了仿生莲藕内部的贯穿大孔结构,以生物相容性好的壳聚糖(CS)作为基质材料,利用冰粒致孔、石蜡模具和冰模具成型3种成型方法制备了分级多孔CS支架材料,然后与力学强度较高的聚乳酸(PLLA)复合,制备网络互穿CS/PLLA复合支架。通过SEM、压缩强度测试和兔股骨髁骨缺损模型对CS/PLLA复合材料的形貌、力学强度和骨修复性能进行了表征。结果表明:利用冰模具制备的CS/PLLA复合支架能可控、批量制备,具有微米-毫米分级多孔结构,大孔孔径约为2mm,内部均匀分布着孔径约为60μm的贯穿微孔,并在微孔内形成密集的PLLA絮状网络结构。干态复合材料的压缩强度和模量分别比纯CS支架的提高了6倍和15倍。体内植入实验结果表明,CS/PLLA复合材料能够促进骨缺损的愈合,并随着新骨的形成,复合材料逐渐被降解吸收。  相似文献   

15.
One challenge in soft tissue engineering is to find an applicable scaffold, not only having suitable mechanical properties, porous structures, and biodegradable properties, but also being abundant in active groups and having good biocompatibility. In this study, a three-dimensional silk fibroin/chitosan (SFCS) scaffold was successfully prepared with interconnected porous structure, excellent hydrophilicity, and proper mechanical properties. Compared with polylactic glycolic acid (PLGA) scaffold, the SFCS scaffold further facilitated the growth of HepG2 cells (human hepatoma cell line). Keeping the good cytocompatibility and combining the advantages of both fibroin and chitosan, the SFCS scaffold should be a prominent candidate for soft tissue engineering, for example, liver.  相似文献   

16.
结合壳聚糖(CS)和聚己内酯(PCL)二者的优点, 以静电纺丝的方法制备了CS/PCL血管支架。采用SEM和电子万能试验机检测了该支架的结构和力学性能, 将内皮祖细胞(EPCs)与该支架膜复合培养, 评估了该血管支架维持细胞黏附、 繁殖和分化的能力。SEM结果显示: 通过静电纺丝可以得到多孔、 类似于天然细胞外基质的直径约400nm的纤维微结构; 当CS与PCL质量比为0.5时, 静电纺丝所制备的CS/PCL血管支架弹性最大形变达到31.64%, 应力-应变曲线显示其弹性变形能力较强; EPCs在CS/PCL血管支架黏附率可达95.1%, 荧光显微镜观察结果也显示了CS/PCL血管支架利于细胞黏附、 生长。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号