首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
采用空气耦合超声无损检测仪,对部分浸润预浸料中树脂沿纤维层厚度方向的浸渍流动进行了实时检测研究.首先将部分浸润预浸料放置在真空袋中,然后固定在扫描机构上,抽真空,考察在一个大气压作用下不同时刻树脂的浸润流动情况,通过C扫描图片实时、快速检测出树脂的浸润流动变化,并应用达西定律计算了碳纤维网架的渗透率.同时,将观察区域截取试样制备成金相分析试样,通过显微分析验证了C扫描图像分析的准确性.结果表明,空气耦合超声C扫描方法是检测预浸料中树脂沿纤维层厚度方向流动的一种快速和有效的方法.  相似文献   

2.
本文采用热模压预成装置将碳纤维单向预浸料层板制备成帽型结构长桁预成型体,通过对不同工艺条件下制备的帽型长桁预成型体的表观质量、厚度和纤维偏转角度进行检测,考察和分析了成型温度和速度对预成型体质量的影响规律。当成型温度较低时,由于树脂的黏度较高,预浸料层间摩擦力较大。预成型体表面出现褶皱现象,并且纤维由于受到层间剪切的作用而出现角度偏转。当成型温度较高时,树脂受到压力作用更易流动。这不仅降低了预成型体的厚度,同时也减弱了树脂束缚纤维的能力,使纤维偏转角度增加。而当成型速度增加时,预浸料层间的摩擦力使纤维的偏转角度增大。因此在预成型过程中,为了提高预成型质量,工艺温度和成型速度应控制在一定范围内。   相似文献   

3.
研究了层间“离位”附载多孔薄膜结构形式增韧层的大厚度纤维预成型体中等代流体(树脂)沿预成型体厚度方向(z向)的流动行为,通过压力传感器监测z向流动RTM(z-RTM)工艺注射过程中进、出胶口压力的变化规律,进一步反推树脂在层间“离位”增韧与非增韧预成型体中的宏观流动及微观浸润模式。结果表明,在 z-RTM工艺注射过程中,树脂在沿纤维束间z向快速流动的同时完成对纤维丝束内部的浸润。层间“离位”附载的增韧层虽延缓了树脂的宏观流动,但使流动前锋曲面更加平滑。层间“离位”增韧预成型体z向渗透率为3.5×10-15m2,与非增韧预成型体的z向渗透率2.9×10-14m2相比,降低约一个数量级。  相似文献   

4.
采用热熔法制备预浸料涉及熔融树脂对纤维层的渗透,对于固化体系为非均相的环氧树脂基体,制备大厚度预浸料可能会受到固化剂分布不均的影响。利用纳米力学方法分别研究采用小厚度玻璃纤维预浸料制备的复合材料和通过树脂真空吸注工艺制备的玻璃纤维复合材料的内部树脂的微观力学均匀性。结果表明:由小厚度预浸料制备的复合材料,其内部树脂各区域具有较好的微观力学均匀性,各区域树脂的纳米硬度和耐磨损性基本相同,各铺层中心和边缘接近;通过树脂真空吸注工艺制备的复合材料则表现出明显的层状分布,固化剂和促进剂颗粒在纤维层外部富集,纤维层外层的树脂具有较高的纳米硬度和耐磨损性,而在纤维层内0.4mm深后的树脂纳米硬度下降,耐磨损性下降,纤维层内部的树脂纳米硬度很低。  相似文献   

5.
采用固体扭转法研究了一种玻璃纤维织物/环氧预浸料和2种碳纤维织物/环氧预浸料的流变特性,为测定凝胶点和研究凝胶化过程提供了一种可行的表征方法。在此基础上考察了试样尺寸和纤维织物结构对预浸料凝胶特性的影响。结果表明:试样宽度对测试结果基本没有影响,而试样厚度增加会引起预浸料动态模量的降低,凝胶点不易判定;纤维织物结构对预浸料凝胶点有很大影响,说明预浸料流变特性反映的是树脂流变特性与纤维网络可变形性综合作用的结果。  相似文献   

6.
为了协同提高碳纤维/环氧树脂(CF/EP)复合材料的电性能和力学性能,采用碳纤维丝束展宽、浸润一体化的工艺方法,将12K CF展宽预浸制备成厚度分别为0.02 mm、0.03 mm、0.08 mm、0.10 mm的CF/EP预浸料及其单向层合板,分析测试了微观结构尺度对CF/EP复合材料层合板电阻率、电阻率随温度及在拉伸载荷作用下响应的影响机制。结果表明,随着CF/EP预浸料厚度从0.10 mm减小到0.02 mm,CF/EP复合材料单向层合板中大尺度树脂富集区所占比例明显减小,厚度方向的电阻率从151.3 Ω·cm减小到32.1 Ω·cm,导电性能提高了约5倍;随着温度升高,CF/EP复合材料层合板电阻率逐步下降,厚预浸料层合板沿厚度方向电阻率的下降速率高于薄预浸料层合板;在载荷作用下由CF/EP薄预浸料制成的CF/EP复合材料层合板的电阻率具有较高的稳定性,表明预浸料薄层化有助于提高CF/EP复合材料抵抗载荷作用的能力,从而获得较高的力学性能和电性能。实验结果为CF/EP复合材料结构-功能一体化设计提供了基础。   相似文献   

7.
纤维堆积体厚度方向浸渗特性   总被引:4,自引:3,他引:1       下载免费PDF全文
使用自行设计的夹具对纯树脂沿纤维织物厚度方向的毛细浸渗行为进行了初步研究。通过改变温度、纤维体积分数、纤维类型以及铺层方式,研究了树脂对纤维织物的毛细浸渗规律,并研究了纤维表面浸润剂的影响。结果表明:升高温度和减小纤维含量均有利于提高浸渗速率;而铺层方式的改变对浸渗规律的影响甚小。   相似文献   

8.
热塑性复合材料因冲击韧性高、环境适应性强、可回收利用等优点,被广泛应用于汽车制造、航空航天、国防军工等领域。但因热塑性树脂加热熔融后较高的黏度使其很难与纤维充分浸渍。预浸料作为制造复合材料的中间材料,现阶段制备工艺已相对成熟,预浸料中纤维已被树脂浸润,因此通过预浸料制备的复合材料孔隙率较低。本文介绍了现阶段常用的热塑性预浸料制备方法及各自的优缺点,包括溶液浸渍法、熔融浸渍法、粉末浸渍法、薄膜叠层法、纤维混杂法以及反应链增长浸渍法。阐述了热塑性树脂熔体浸润纤维的浸渍机理,对浸渍机理的部分研究成果进行了概括。概述了浸渍温度、浸渍压力和牵引速率对预浸带性能的影响。最后指出了国内预浸料生产中存在的主要问题,未来可采用多学科结合、纤维树脂改性、对浸渍过程进行计算机模拟等方法促进热塑性预浸带的产业化发展。  相似文献   

9.
采用共固化液体成型工艺制备了炭纤维/环氧树脂基复合材料层板,分析了层板的密实和两种树脂的相互扩散情况,采用Ⅰ型层间断裂韧性(能量释放率GⅠC)和短梁抗剪强度研究了共固化液体成型层板的层间性能,并与预浸料成型层板和液体成型层板进行了比较。进一步研究了共固化层板中预浸料/液体成型层界面处的纤维取向对GⅠC的影响。结果表明:所制备的共固化液体成型层板,层内密实程度高、层间富树脂区不明显,预浸料/液体成型层的层间处两种树脂有一定程度的相互扩散;受界面处树脂相互扩散的影响,共固化层板的层间断裂韧性处于预浸料层板、液体成型层板的平均水平,而层板的短梁抗剪强度由性能较低的一方决定;预浸料/液体成型层界面处的纤维取向对GⅠC有明显影响,其中[45/90]的情况有着较高的抵抗开裂和裂纹扩展的能力。  相似文献   

10.
一.前言 预浸料是制造纤维增强复合材料用的一种预制铺层材料,也是用作复合材料设计和制造的中间材料。目前,在预浸料这一领域里的新发展,就象采用新纤维一样具有重大意义。 单向纤维预浸料所用增强材料常为玻璃纤维、碳纤维和有机纤维,所用树脂一般为热固性树脂和热塑性树脂。 预浸料的制造方法有:溶液胶预浸,熔融树脂预浸、熔融树脂涂膜后传递预浸、胶膜热融后传递预浸、胶膜热融后传递预浸、热塑性树脂制成膜热融传递预浸、热塑性树脂纤维与增强纤维混合排列热融预浸(即双纤维预浸)、热塑性树脂直接熔融预浸等。 制造预浸料用设备如按功能分有单功能预浸机、多功能预浸机;按结构分有滚筒式定长预浸机、连续卷盘  相似文献   

11.
Automatic or semiautomatic ultrasonic nondestructive evaluation systems usually scan objects for defects by the B-scan or C-scan method. B-scan or C-scan images are used to evaluate the quality of the object. Complex ultrasonic images can be quickly and easily produced using the Hilbert transform method. Simultaneous real-time displays of the complex and C-scan images is also possible. Some characteristics of the echoes reflected from the defects do not show up clearly in C-scan images but can be easily observed in the complex ultrasonic images. Two specimens, one with a blind hole and the other with 16 blind holes, were scanned. The C-scan image and complex images were displayed simultaneously in order to compare the resolution of the images. The experimental results showed that the attributes of instantaneous amplitude can enhance the weak events, but the resolution of the image is apparently not improved. The advantage of the instantaneous phase and instantaneous frequency attributes are that they are very sensitive to the boundaries of the holes. Though the images may look noisy, they really offer an opportunity to show the holes that C-scan image cannot.  相似文献   

12.
Abstract

Automatic or semiautomatic ultrasonic nondestructive evaluation systems usually scan objects for defects by the B-scan or C-scan method. B-scan or C-scan images are used to evaluate the quality of the object. Complex ultrasonic images can be quickly and easily produced using the Hilbert transform method. Simultaneous real-time displays of the complex and C-scan images is also possible. Some characteristics of the echoes reflected from the defects do not show up clearly in C-scan images but can be easily observed in the complex ultrasonic images.

Two specimens, one with a blind hole and the other with 16 blind holes, were scanned. The C-scan image and complex images were displayed simultaneously in order to compare the resolution of the images. The experimental results showed that the attributes of instantaneous amplitude can enhance the weak events, but the resolution of the image is apparently not improved. The advantage of the instantaneous phase and instantaneous frequency attributes are that they are very sensitive to the boundaries of the holes. Though the images may look noisy, they really offer an opportunity to show the holes that C-scan image cannot.  相似文献   

13.
激光超声技术具有无需耦合剂、快速及高分辨等特点,适用于各向异性碳纤维增强树脂编织复合材料的缺陷检测。运用有限元法分析了激励位置和编织结构对激光点源激发超声波信号的影响,获得了弹性波在材料内部的传播规律以及能量分布特征,并采用1 MHz空气耦合换能器搭建了一套小型化、低成本的非接触激光超声C扫描成像系统,开展了斜纹和缎纹碳纤维增强树脂编织复合材料的近表微结构和内部缺陷检测实验。结果表明,基于空气耦合换能器的激光超声成像可以高精度地再现碳纤维增强树脂编织复合材料的近表树脂囊、碳纤维束形状、取向、尺寸及其内部缺陷等空间分布特征,有望为航空复合材料提供一种原位的微结构表征和缺陷检测方法。   相似文献   

14.
The repair efficiency of bisphenol E cyanate ester (BECy) resin was investigated for the injection repair of high temperature polymer–matrix composites by ultrasonic C-scan mapping, fluorescent dye penetration, optical microscopy, hole plate shear (HPS), and post delamination compression tests. Bismaleimide/carbon fiber (BMI–cf) composites were chosen as a model substrate. A vacuum-based resin injection repair method was used for repairing the pre-damaged composite specimens. The effect of surface wettability on the repair efficiency of BECy on BMI–cf composite substrate was studied by temperature dependent contact angle measurements. C-scan, fluorescent dye penetration, and optical microscopy images of pristine, delaminated, and repaired specimens reveal efficient infiltration of resin in specimens repaired at elevated temperatures. The repair efficiency calculated from HPS and post delamination compression tests was observed to be 155% and 100%, respectively, illustrating the capability of BECy for repairing high temperature structural composites.  相似文献   

15.
One of the primary concerns in thermal spray coatings is bond integrity, as disbonds at the coating/ substrate interface could cause premature failure of a component. Current quality control test practices use empirical destructive mechanical test methods that do not provide direct correlation between test results and coating performance. Nondestructive evaluation (NDE) techniques used for bulk materials are not readily adaptable for the evaluation and characterization of coatings. This paper reports on the use of thermal wave imaging and ultrasonic immersion C-scan to characterize artificial disbonds in plasma spray coatings on steel substrates. This work demonstrates the capability of these techniques in characterizing total disbonds and presence of ' kissing bonds ” (where the interface surfaces are in such close contact that they give a appearance of a good bond). The effects of ultrasonic frequency on the C-scan images were also studied. A critical evaluation of both thermal wave imaging and ultrasonic techniques is presented along with their relative advantages and disadvantages.  相似文献   

16.
This study focuses on multi-axial stitched fabric, which is a thick, high performance reinforcement for large-scale composite structures. The effects of impact damage on multi-axial stitched CFRP laminates molded by vacuum-assisted resin transfer molding (VARTM) method were evaluated. Impact damage within material was evaluated by ultrasonic scanning device and optical cross-sectional observations. Probed images obtained by both non-destructive and destructive methods were compared, and internal damage distributions of multi-axial stitched CFRP laminates were clarified. In addition, residual compressive strength and fatigue property of impact-damaged CFRP laminates were evaluated by in situ damage growth monitoring using the thermo-elastic stress analyzer (TESA). Three-dimensional damage distribution of impacted CFRP laminate was obtained from ultrasonic C-scan images and cross-sectional photographs. Damage progress behavior was observed on a destructive and non-destructive basis by post-impact fatigue (PIF) test.  相似文献   

17.
An innovative non-destructive evaluation (NDE) technique is presented based on current stimulated thermography. Modulated electric current is injected to Carbon Fibre Reinforced Plastics (CFRP) laminates as an external source of thermal excitation. Pulsed Phase Thermography (PPT) is concurrently employed to identify low velocity impact induced (LVI) damage. The efficiency of the proposed method is demonstrated for both plain and with Carbon Nanotubes (CNTs) modified laminates, which are subjected to low-velocity impact damaged composite laminates at different energy levels. The presence of the nano reinforcing phase is important in achieving a uniform current flow along the laminate, as it improves the through thickness conductivity. The acquired thermographs are compared with optical PPT, C-scan images and Computer Tomography (CT) representations. The typical energy input for successful damage identification with current injection is three to four orders of magnitude less compared to the energy required for optical PPT.  相似文献   

18.
Ultrasonic imaging in the C-scan mode was used in conjunction with the amplitude of the reflected signal to measure the temperature dependence of resin flow rate in single layers of woven carbon fabric. The RFI samples were vacuum-bagged and scanned in a water tank at 50°C, 60°C, 70°C, and 80°C. The measured flow rates were plotted versus inverse viscosity to determine the permeability in the thin film, non-saturated system. The permeability values determined in this work were consistent with permeability values reported in the literature. Capillary flow was not observed at the temperatures and times required for pressurized flow to occur. The flow rate at 65°C was predicted from the measured flow rates, and then measured in a 10-layer laminate. The investigation demonstrates that ultrasonic imaging in the C-scan mode in conjunction with the amplitude of the reflected signal is an effective method for measuring resin flow through fabric.  相似文献   

19.
To enhance the interfacial property between a carbon fiber and epoxy matrix, an ultrasonic technique was used to treat the resin liquid and the impregnated fibers respectively. The effects of the treatments on the characteristics of the resin system and the fiber surface, as well as fiber/matrix interfacial bonding strength, were analyzed and discussed. The results indicated ultrasonic treatments significantly decreased the viscosity and surface tension of the resin system, and increased the wettability and the oxygen content of the fiber surface due to the ultrasonic cavitation effects. Microbond tests revealed much more increase of interfacial shear strength when the ultrasound was applied to the impregnated fibers, and combination failures of interface and matrix layer were observed from the pulled-out fiber surface.  相似文献   

20.
A custom-made, air-coupled ultrasonic device was applied to cure monitoring of thick samples (7-10 mm) of unsaturated polyester resin at room temperature. A key point was the optimization of the experimental setup in order to propagate compression waves during the overall curing reaction by suitable placement of the noncontact transducers, placed on the same side of the test material, in the so-called pitch-catch configuration. The progress of polymerization was monitored through the variation of the time of flight of the propagating longitudinal waves. The exothermic character of the polymerization was taken into account by correcting the measured value of time of flight with that one in air, obtained by sampling the air velocity during the experiment. The air-coupled ultrasonic results were compared with those obtained from conventional contact ultrasonic measurements. The good agreement between the air-coupled ultrasonic results and those obtained by the rheological analysis demonstrated the reliability of air-coupled ultrasound in monitoring the changes of viscoelastic properties at gelation and vitrification. The position of the transducers on the same side of the sample makes this technique suitable for on-line cure monitoring during several composite manufacturing technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号