首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A time diversity automatic repeat-request (ARQ) scheme is investigated for slotted random access direct-sequence code-division multiaccess (DS/CDMA ALOHA) wireless packet radio networks on multipath Rayleigh fading channels. The receiver retains and processes all the retransmissions of a single data block (packet) using predetection diversity combining, instead of discarding those which are detected in error. This effectively improves the system throughput and delay characteristics especially at small values of signal-to-noise ratio (SNR) per bit. A simple and practical selection combining rule is proposed, which lends itself to a low-complexity receiver structure and specifically suitable for high data rate transmissions. Owing to the stochastic nature of the multiple access interference, the new maximum output selection diversity (MO/SD) system yields superior performance in comparison to the traditional maximum SNR selection diversity (SNR/SD) model. The bit error rate performance, throughput and the average number of transmissions required to transmit a packet successfully with and without forward error correction (FEC) are evaluated. Numerical results reveal that the proposed adaptive retransmission diversity with packet combining provides a considerable advantage over the conventional slotted DS/CDMA ALOHA without incurring a substantial penalty in terms of cost or complexity.  相似文献   

2.
Throughput, delay, and stability for two slotted ALOHA packet radio systems are compared. One system is a slotted direct-sequence spread-spectrum multiple-access (DS/SSMA) network where each user employs a newly chosen random signature sequence for each bit in a transmitted packet. The other system is a multiple-channel slotted narrow-band ALOHA network where each packet is transmitted over a randomly selected channel. Accurate packet success probabilities for the code-division multiple-access (CDMA) system are computed using an improved Gaussian approximation technique which accounts for bit-to-bit error dependencies. Average throughput and delay results are obtained for the multiple-channel slotted ALOHA system and CDMA systems with block error correction. The first exit time (FET) is computed for both systems and used as a measure of the network stability. The CDMA system is shown to have better performance than the multiple-channel ALOHA system in all three areas  相似文献   

3.
The paper presents a new spread spectrum communication system called orthonormal code diversity detection (OCDD)/CDMA system based on the novel concept of orthonormal-basis diversity which is a generalization of the existing spread spectrum diversity concepts such as path diversity and frequency diversity. The OCDD/CDMA system is similar to the conventional DS/CDMA system in the transmitter structure, but is different in the receiver structure as it employs the extended orthonormal basis-function set which is the union of the Walsh basis-functions multiplied by the PN sequences and, optionally, their delayed replicas. The received signal is matched to the extended basis functions, and the matched signal components are combined together after individual channel compensation. The proposed OCDD/CDMA system exhibits the bit error performance which is much improved over the conventional DS/CDMA system using maximal ratio combing. In addition, it is robust to the chip timing error, which becomes more crucial in the future DS/CDMA systems having a higher data rate and smaller chip interval. From the simulation results, we confirm that the OCDD/CDMA system is a unique spread spectrum communication technique that can effectively increase the diversity utilization in the slowly fading channel, overcoming the inherent problems in the DS/CDMA and OFDM/CDMA systems  相似文献   

4.
The throughput and delay characteristics of a land-mobile satellite channel are analyzed for both slotted ALOHA. And slotted direct-sequence CDMA (code division multiple access), using binary phase shift keying (BPSK) modulation and forward error correction coding (FEC). In the case of CDMA, the application of path diversity techniques-maximal ratio combining and selection diversity-is also taken into account. Packet success probabilities are derived for both slow and fast fading, in order to evaluate the throughput and delay. Numerical results are presented for arbitrary code lengths and for specific values of the number of resolvable paths. It is shown that CDMA can offer a substantial improvement over slotted ALOHA, especially when the chip time is less than the delay spread  相似文献   

5.
Packet throughput figures are obtained for a decentralized radio local area network (RLAN) which is based on asynchronous direct-sequence code-division multiple-access (DS/CDMA). Packets arrive at the receiver nodes with different power levels. Techniques are developed to derive the probability of packet success for a system employing random periodic spreading sequences. It can be shown, that this system performs far better than a network using random spreading sequences. Based on the packet error probability, throughput figures of slotted DS/CDMA-ALOHA are presented for various scenarios. The effect of applying forward error correction (FEC) is investigated. For finite user environments, additional sources of errors have to be considered. These have a major impact and reduce the overall system performance. Finally, the throughput figures of a system applying the binary exponential backoff algorithm to avoid unstable behavior is investigated. The performance figures of the various systems described in this paper show that DS/CDMA forms a valuable choice for future RLANs.  相似文献   

6.
Multicarrier transmission schemes have been introduced into code-division multiple access (CDMA) systems to gain advantages for high data rate transmission. One of the methods is to transmit identical narrowband direct-sequence (DS) waveforms in parallel over a number of subchannels using frequency diversity. In this paper, we propose a multicarrier CDMA system with an adaptive subchannel allocation method for forward links. In the proposed system, instead of identical DS waveforms being transmitted over a number of subchannels in parallel, each user's DS waveform is transmitted over the user's favourite subchannel which has the largest fading amplitude among all the subchannels. We analyze the performance characteristics of the system when orthogonal and random signature sequences are used. The proposed system is shown to have performance gain over the conventional multicarrier CDMA system. We also investigate how the performance is influenced when the signal is not perfectly allocated into the best subchannel  相似文献   

7.
The performance of DS/CDMA systems using forward link beamforming and RAKE diversity combining is investigated analytically in frequency selective fading channels, whereas previous studies have resorted to Monte Carlo simulations in flat fading channels. The capacity of DS/CDMA systems is considerably improved by employing forward link beamforming  相似文献   

8.
An analytical model is developed to evaluate the performance of a cellular slotted DS CDMA system in terms of user capacity, throughput, and delay for the reverse link, i.e., from mobile to base station, considering interference from both home cell and adjacent cells. The user capacity is studied for voice communications and the throughput and delay are investigated for data communications. The effect of both imperfect power control and imperfect sectorization on the performance is investigated. It is shown that the system is rather sensitive to small power control errors and that voice activity monitoring and sectorization are good methods to improve the performance of cellular DS CDMA systems  相似文献   

9.
The next-generation wireless personal and mobile communication systems are expected to accommodate not only high-quality voice services, but also a broad range of other multirate services. Of the various multiaccess techniques, wide-band code-division multiple access (CDMA) has been regarded as an important part of the third-generation wireless communication systems because of its high frequency utilization efficiency and suitability for handling multimedia and multirate services. In this paper, we consider a system with a simplified receiver structure for direct-sequence CDMA (DS/CDMA) wireless communication handsets, in which improved performance is demonstrated when compared to a conventional DS/CDMA system with a RAKE receiver at the mobile station. We arrive at this system by finding the optimal solution to a general multiple-input single-output (MISO) DS/CDMA smart antenna system. We find that this solution reduces to a pre-RAKE with space transmit diversity system under the assumption that a simple one-finger matched filter is used at the receiver. This system combines the advantages of pre-RAKE diversity and transmit antenna diversity. It is shown that significant system performance and capacity improvements are possible. The numerical results also reveal that this system is not too sensitive to channel estimation errors  相似文献   

10.
The microcellular radio environment is characterized by a Rician fading channel. The use of a slotted code division multiple access (CDMA) scheme is considered in single- and multi-microcell systems. The throughput and delay performance of a slotted CDMA network are analyzed for slow and fast Rician fading radio channels using differential phase shift keying (DPSK) modulation. The application of selection diversity (SD) and maximal ratio combining (MRC) improve the performance for both slow and fast fading. It is also shown that the use of forward error correcting (FEC) codes enhances the system performance. Computational results are presented for maximum rms delay spread in the order of 2 μs and data rates of 32 and 64 kbit/s. A comparative analysis of macro-, micro- and pico-cellular CDMA systems is also presented  相似文献   

11.
Using a recently developed moment generating function‐based approach for the performance evaluation of digital communications over fading channels, we present a unified approach for the exact performance analysis of binary direct‐sequence code division multiple access (DS‐CDMA) systems operating over generalized frequency‐selective fading channels. The results are applicable to single carrier systems employing RAKE reception as well as to multicarrier DS‐CDMA systems with frequency diversity. Aside from simplifying previous results both analytically and computationally, the proposed approach also gives a solution for many situations which heretofore defied a simple form. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
Bandlimited direct‐sequence code division multiple access (DS‐CDMA) attracts much attention for its compact spectrum and the ability to suppress inter‐symbol interference. Among the various bandlimited DS‐CDMA systems available, minimum‐bandwidth DS‐CDMA (MB‐DS‐CDMA) is the only realizable Nyquist rate transmission system. But, MB‐DS‐CDMA only applies to certain kinds of spreading codes. Accordingly, this study proposes a modified DS‐CDMA structure which extends the application of MB‐DS‐CDMA to all common spreading codes at the expense of a negligible reduction in the transmission rate. Additionally, the bit error rate of the proposed schemes adopting either single‐user or multi‐user detection receiver is analyzed and compared with that of the commonly‐used raised‐cosine‐pulsed DS‐CDMA over multipath fading channels. The numerical results show that given a sufficiently large number of users, the bit error rate performance of modified MB‐DS‐CDMA is comparable to that of the raised‐cosine‐pulsed DS‐CDMA scheme; meanwhile, the realizable modified MB‐DS‐CDMA approaches the ultimate transmission rate.  相似文献   

13.
We present a transmit diversity technique for the downlink of (wideband) direct-sequence (DS) code division multiple access (CDMA) systems. The technique, called space-time spreading (STS), improves the downlink performance by using a small number of antenna elements at the base and one or more antennas at the handset, in conjunction with a novel spreading scheme that is inspired by space-time codes. It spreads each signal in a balanced way over the transmitter antenna elements to provide maximal path diversity at the receiver. In doing so, no extra spreading codes, transmit power or channel information are required at the transmitter and only minimal extra hardware complexity at both sides of the link. Both our analysis and simulation results show significant performance gains over conventional single-antenna systems and other open-loop transmit diversity techniques. Our approach is a practical way to increase the bit rate and/or improve the quality and range in the downlink of either mobile or fixed CDMA systems. A STS-based proposal for the case of two transmitter and single-receiver antennas has been accepted and will be included as an optional diversity mode in release A of the IS-2000 wideband CDMA standard  相似文献   

14.
Multicarrier DS/SFH-CDMA systems   总被引:1,自引:0,他引:1  
Multicarrier direct-sequence/slow-frequency-hopping (MC DS/SFH) code-division multiple-access (CDMA) systems are proposed, in which multiple carriers are modulated by the same DS waveform and hopped in frequency according to a random hopping pattern. The receiver dehops the received signal with the same pattern, provides RAKE receivers for each carrier, and combines the outputs with a maximal ratio combiner (MRC). The performance of the proposed system is investigated over a frequency-selective Rayleigh-fading channel and compared to that of the MC DS-CDMA systems. It is shown that for the same diversity order, the MC DS/SFH-CDMA systems are superior in reducing multiple-access interference (MAI) while preserving the good capability of narrowband interference suppression, when the system parameters are selected properly.  相似文献   

15.
MC‐CDMA, a multicarrier (MC) modulation scheme based on code division multiple access (CDMA), is the most likely candidate for the next generation of mobile radio communications. The rate compatible punctured turbo (RCPT) coded hybrid automatic repeat request (HARQ) has been found to give improved throughput performance in a direct sequence (DS) CDMA system. However, the extent to which the RCPT HARQ improves the throughput performance of an MC‐CDMA system has not been fully understood. In this paper, we apply the RCPT HARQ to MC‐CDMA and evaluate by computer simulations its performance in a frequency selective Rayleigh fading channel. We found that the performance of RCPT HARQ MC‐CDMA is almost insensitive to channel characteristics. The performance can be drastically improved with receive diversity combined with space‐time transmit diversity. In addition, the comparison of RCPT HARQ MC‐CDMA, orthogonal frequency division multiplexing, and DS‐CDMA shows that under similar conditions the throughput of MC‐CDMA is the best in a frequency selective fading channel.  相似文献   

16.
Multi‐carrier technologies in general, and OFDM and MC‐CDMA in particular, are quickly becoming an integral part of the wireless landscape. In this first of a two‐part survey, the authors present the innovative transmit/receive multi‐carrier implementation of TDMA and DS‐CDMA systems. Specifically, at the transmit side, the pulse shape (in TDMA) and the chip shape (in DS‐CDMA) corresponds to a linear combining of in‐phase harmonics (called a CI signal). At the receiver side, traditional time‐domain processing (equalization in TDMA and RAKE reception in DS‐CDMA) is replaced by innovative frequency based processing. Here, receivers decompose pulse (or chip) shapes into carrier subcomponents and recombine these in a manner achieving both high frequency diversity gain and low MAI. The resulting system outperforms traditional TDMA and DS‐CDMA systems by 10–14 dB at typical BERs, and, by application of pseudo‐orthogonal pulse shapes (chip shapes), is able to double system throughput while maintaining performance gains of up to 8 dB. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents a generalized model of binary phase shift keying (BPSK) direct sequence code division multiple access (DS/CDMA) macrocellular and microcellular sectorized mobile radio systems over Nakagami fading plus lognormal shadowing channels. RAKE receiver, perfect and imperfect sectorization, voice activity monitoring, microscopic and composite microscopic plus macroscopic diversity are considered. The interrelationships among the number of interfering cells, sectorization degree, sectorization imperfection, voice activity factor, fading parameter, microscopic diversity degree, microscopic plus macroscopic diversity degree and the number of users are considered. Numerical results show that voice activity monitoring and sectorization can reduce multiple access interference (MAI). Furthermore, composite microscopic plus macroscopic diversity system can counteract the fast and slow fading components simultaneously.  相似文献   

18.
随机M进制正交码混合DS—SFH CDMA扩频通信系统性能分析   总被引:1,自引:0,他引:1  
李全  杨列亮 《通信学报》1997,18(6):37-38
本文研究了随机MF是制正交码混合DS-SFH扩频码分多址信号经过多径瑞利频率非选择性衰落信道,在非相干RAKE接收机中采用最大输出信噪比选择或最大输出选择接收时系统的性能;给出了两种分集接收情况下差错概率表示式。数值计算研究了分集数,M值,多用户干扰对系统性能的影响,并且对这两种分集接收情况下系统性能进行了比较。  相似文献   

19.
The analysis of an adaptive rate convolutionally coded multicarrier direct sequence code division multiple-access (DS/CDMA) system is considered. In order to accommodate a number of coding rates easily and make the encoder and decoder structure simple, we use the rate-compatible punctured convolutional (RCPC) code. We obtain data throughputs at several coding rates, and choose the coding rate that has the highest data throughput in the signal-to-interference and noise ratio (SINR) sense. To achieve maximum data throughput, a rate adaptive system is proposed based on the channel state information (the SINR estimate). The SINR estimate is obtained by the soft decision Viterbi decoding metric. We show that the proposed rate adaptive convolutionally coded multicarrier DS/CDMA system can enhance the spectral efficiency and provide frequency diversity  相似文献   

20.
多用户检测技术是DS/CDMA中的一项关键技术,而天线阵的广泛应用也促使对多入多出系统的研究。该文将两种技术结合在一起,考虑到基站在一般情况下总是知道本小区的多个用户的扩频码,在此半盲意义下研究了将子空间方法应用于多用户检测的技术。这种技术可适用于低速移动台在慢衰落信道下的盲检测。仿真结果表明这种算法相对于只利用一个用户的扩频码的盲检测算法性能有相当大的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号