首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
为精确而有效地求解机电耦合作用下含裂纹压电材料的断裂参数,首先,通过将复势函数法、扩展有限元法和光滑梯度技术引入到含裂纹压电材料的断裂机理问题中,提出了含裂纹压电材料的Cell-Based光滑扩展有限元法;然后,对含中心裂纹的压电材料强度因子进行了模拟,并将模拟结果与扩展有限元法和有限元法的计算结果进行了对比。数值算例结果表明:Cell-Based光滑扩展有限元法兼具扩展有限元法和光滑有限元法的特点,不仅单元网格与裂纹面相互独立,且裂尖处单元不需精密划分,与此同时,Cell-Based光滑扩展有限元法还具有形函数简单且不需求导、对网格质量要求低且求解精度高等优点。所得结论表明Cell-Based光滑扩展有限元法是压电材料断裂分析的有效数值方法。   相似文献   

2.
梯度涂层材料中裂纹问题的非均匀元分析   总被引:4,自引:0,他引:4  
本文采用非均匀等参有限元的方法研究了薄膜梯度涂层/均匀基材中的界面裂纹问题,并与双材料界面裂纹情况进行了对比计算。研究表明:在均匀基材上采用梯度涂层,与双材料相比可以有效地降低裂尖场应力强度因子;同时还分析了涂层厚度与梯度参数对界面应力强度因子的影响。结果表明:当薄膜厚度大于或等于裂纹长度时,应力强度因子(KIK)对其尺度的变化显得不敏感;对梯度参数的影响而言,当材料性能曲线的幂指数m大于1时,裂尖场的应力强度因子K相对KI很小且基本不随m变化,因此裂尖场与均匀材料情况类似;当m小于1时,应力强度因子K随m减小而急剧增大,裂尖场由KIK控制,断裂趋于混合型。  相似文献   

3.
基于双材料界面裂纹尖端的基本解,构造扩展有限元法(eXtended Finite Element Methods, XFEM)裂尖单元结点的改进函数。有限元网格剖分不遵从材料界面,考虑3种类型的结点改进函数:弱不连续改进函数、Heaviside改进函数和裂尖改进函数,建立XFEM的位移模式,给出计算双材料界面裂纹应力强度因子(Stress Intensity Factors, SIFs)的相互作用积分方法。数值结果表明:XFEM无需遵从材料界面剖分网格,该文的方法能够准确评价双材料界面裂纹尖端的SIFs。  相似文献   

4.
李兴民  雷振坤 《工程力学》2011,(12):7-12,26
在双材料界面端奇异性应力场方程的基础上,采用数字相移光弹性方法分析了具有实数应力奇异性的界面端应力强度因子。实验选择铝合金/环氧树脂双材料形成135°和90°界面端切口进行四点弯曲测试,利用数字相移光弹性法得到界面端全场等色线级数作为原始数据。将应力光学定律和界面端奇异性应力场方程相结合,分别得到条纹级数距离界面端成线...  相似文献   

5.
非均匀复合材料中反平面裂纹的动态断裂力学研究   总被引:9,自引:0,他引:9       下载免费PDF全文
对于非均匀复合材料中多个裂纹的动态断裂力学问题, 提出了一种分析方法, 假设复合材料为正交各向异性并含有多个垂直于厚度方向的裂纹, 材料参数沿厚度方向为变化的, 沿该方向将复合材料划分为许多单层, 假设单层材料参数为常数, 应用柔度矩阵/刚度矩阵方法及Fourier变换法, 在L aplace 域内推导出了控制问题的奇异积分方程组, 并用虚位移原理求解, 给出了应力强度因子及能量释放率的表达式, 然后利用Laplace 数值反演, 得出了裂纹尖端的动态应力强度因子和能量释放率。作为算例, 研究了带有两个裂纹的功能梯度结构, 分析了材料参数的优化对降低应力强度因子的意义。   相似文献   

6.
靳静  马鹏 《工程力学》2013,30(6):327-333
该文利用积分变换和奇异积分方程技术研究压电压磁双材料界面裂纹在磁导、电位移和机械载荷作用下的二维断裂问题。本文仅考虑四种理想的裂纹面电磁边界条件即磁电不导通(情形1)、磁导通电不导通(情形2)、磁不导通电导通(情形3)和磁电导通(情形4)。导出了应力强度因子(SIF)和能量释放率(ERR)的表达式,给出了ERR的大量数值结果,并与已有结果进行了对比。研究成果对压电压磁多层复合结构的设计具有理论与应用价值。  相似文献   

7.
扩展有限元法在裂纹扩展问题中的应用   总被引:2,自引:0,他引:2  
扩展有限元法(Extended finite element method,XFEM)是近几年发展起来的数值方法,属于传统有限元法的扩展,具有区别于传统有限元法的优点,在求解不连续断裂问题上具有更高的精度及效率。本文针对影响裂纹扩展的主要因素进行探讨,继而介绍扩展有限元的基本原理,并对其在裂纹扩展中的应用进行综述,同时对该方法的下一步研究进行了展望。  相似文献   

8.
含界面边裂纹压电材料反平面问题的应力强度因子   总被引:4,自引:0,他引:4  
研究了含界面边裂纹的不同压电介质组成的复合材料在反平面荷载和平面内电场作用下的电弹场,得到了级数形式的基本解和应力强度因子,最后用边界配置法求解了应力强度因子.结果表明,在外加剪切荷载的作用下,应力强度因子与外加电场无关.  相似文献   

9.
研究了在无穷远力电荷载作用下广义螺型位错偶极子与圆弧形界面裂纹的电弹干涉作用。运用复变函数方法,导出了该问题的一般解答,并获得了界面上只有一条裂纹时的封闭形式解,求得了基体及夹杂区域复势函数、广义应力场、裂纹尖端的广义应力强度因子以及作用在螺型位错偶极子上的位错力和力偶矩。讨论了裂纹长度、压电材料电弹常数以及位错偶极子的位置对裂纹尖端应力强度因子、偶极子中心的位错力和像力偶矩的影响。  相似文献   

10.
平面裂纹应力强度因子的半解析有限元法   总被引:2,自引:2,他引:0  
利用弹性平面扇形域哈密顿体系的方程,通过分离变量法及共轭辛本征函数向量展开法,推导了一个圆形奇异解析单元列式,该单元能准确地描述平面裂纹尖端场。将该解析元与有限元相结合,构成半解析的有限元法,可求解任意几何形状和载荷的平面裂纹应力强度因子及扩展问题。对典型算例的计算结果表明本文方法简单有效,具有令人满意的精度。  相似文献   

11.
The extended finite element method was introduced in 1999 to treat problems involving discontinuities with no or minimal remeshing through appropriate enrichment functions. This enables elements to be split by a discontinuity, strong or weak, and hence requires the integration of discontinuous functions or functions with discontinuous derivatives over elementary volumes. A variety of approaches have been proposed to facilitate these special types of numerical integration, which have been shown to have a large impact on the accuracy and the convergence of the numerical solution. The smoothed extended finite element method (XFEM), for example, makes numerical integration elegant and simple by transforming volume integrals into surface integrals. However, it was reported in the literature that the strain smoothing is inaccurate when non‐polynomial functions are in the basis. In this paper, we investigate the benefits of a recently developed Linear smoothing procedure which provides better approximation to higher‐order polynomial fields in the basis. Some benchmark problems in the context of linear elastic fracture mechanics are solved and the results are compared with existing approaches. We observe that the stress intensity factors computed through the proposed linear smoothed XFEM is more accurate than that obtained through smoothed XFEM.  相似文献   

12.
13.
Although a lot of interface crack problems were previously treated, few solutions are available under arbitrary material combinations. This paper deals with a central interface crack in a bonded finite plate and periodic interface cracks. Then, the effects of material combination and relative crack length on the stress intensity factors are discussed. A useful method to calculate the stress intensity factor of interface crack is presented with focusing on the stress at the crack tip calculated by the finite element method.  相似文献   

14.
The problem of finite bimaterial plates with an edge crack along the interface is studied. A complex variable boundary element method is presented and applied to determine the stress intensity factor for finite bimaterial plates. Using the pseudo-orthogonal characteristic of the eigenfunction expansion forms and the well-known Bueckner work conjugate integral and taking the different complex potentials as auxiliary fields, the interfacial stress intensity factors associated with the physical stress-displacement fields are evaluated. The effects of material properties and crack geometry on stress intensity factors are investigated. The numerical examples for three typical specimens with six different combinations of the bimaterial are given. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
This study presents a novel application of the scaled boundary finite element method (SBFEM) to model dynamic crack propagation problems. Accurate dynamic stress intensity factors are extracted directly from the semi‐analytical solutions of SBFEM. They are then used in the dynamic fracture criteria to determine the crack‐tip position, velocity and propagation direction. A simple, yet flexible remeshing algorithm is used to accommodate crack propagation. Three dynamic crack propagation problems that include mode‐I and mix‐mode fracture are modelled. The results show good agreement with experimental and numerical results available in the literature. It is found that the developed method offers some advantages over conventional FEM in terms of accuracy, efficiency and ease of implementation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents fractal finite element based continuum shape sensitivity analysis for a multiple crack system in a homogeneous, isotropic, and two dimensional linear-elastic body subjected to mixed-mode (modes I and II) loading conditions. The salient feature of this method is that the stress intensity factors and their derivatives for the multiple crack system can be obtained efficiently since it only requires an evaluation of the same set of fractal finite element matrix equations with a different fictitious load. Three numerical examples are presented to calculate the first-order derivative of the stress intensity factors or energy release rates.  相似文献   

17.
An eigenfunction expansion is used to formulate the global element on the crack tip. The global-local finite element method employs both conventional finite element and classical Rayleigh-Ritz kinematic approach. The hybrid Ritz method not only preserves the finite element modelling capability but adds the advantage of using prior information regarding the anticipate behaviour of the particular problem. Thus, it is able to achieve better accuracy with fewer elements in comparison with conventional finite element. Several examples relative to crack problems are presented to demonstrate the global-local finite element method.  相似文献   

18.
This paper presents a coupling technique for integrating the element‐free Galerkin method (EFGM) with the fractal finite element method (FFEM) for analyzing homogeneous, isotropic, and two‐dimensional linear‐elastic cracked structures subjected to mixed‐mode (modes I and II) loading conditions. FFEM is adopted for discretization of the domain close to the crack tip and EFGM is adopted in the rest of the domain. In the transition region interface elements are employed. The shape functions within interface elements which comprise both the EFG and the finite element (FE) shape functions, satisfies the consistency condition thus ensuring convergence of the proposed coupled EFGM–FFEM. The proposed method combines the best features of EFGM and FFEM, in the sense that no special enriched basis functions or no structured mesh with special FEs are necessary and no post‐processing (employing any path independent integrals) is needed to determine fracture parameters, such as stress‐intensity factors (SIFs) and T‐stress. The numerical results show that SIFs and T‐stress obtained using the proposed method are in excellent agreement with the reference solutions for the structural and crack geometries considered in the present study. Also, a parametric study is carried out to examine the effects of the integration order, the similarity ratio, the number of transformation terms, and the crack length to width ratio on the quality of the numerical solutions. A numerical example on mixed‐mode condition is presented to simulate crack propagation. As in the proposed coupled EFGM–FFEM at each increment during the crack propagation, the FFEM mesh (around the crack tip) is shifted as it is to the new updated position of the crack tip (such that FFEM mesh center coincides with the crack tip) and few meshless nodes are sprinkled in the location where the FFEM mesh was lying previously, crack‐propagation analysis can be dramatically simplified. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
This paper examines the theoretical bases for the smoothed finite element method (SFEM), which was formulated by incorporating cell‐wise strain smoothing operation into standard compatible finite element method (FEM). The weak form of SFEM can be derived from the Hu–Washizu three‐field variational principle. For elastic problems, it is proved that 1D linear element and 2D linear triangle element in SFEM are identical to their counterparts in FEM, while 2D bilinear quadrilateral elements in SFEM are different from that of FEM: when the number of smoothing cells (SCs) of the elements equals 1, the SFEM solution is proved to be ‘variationally consistent’ and has the same properties with those of FEM using reduced integration; when SC approaches infinity, the SFEM solution will approach the solution of the standard displacement compatible FEM model; when SC is a finite number larger than 1, the SFEM solutions are not ‘variationally consistent’ but ‘energy consistent’, and will change monotonously from the solution of SFEM (SC = 1) to that of SFEM (SC → ∞). It is suggested that there exists an optimal number of SC such that the SFEM solution is closest to the exact solution. The properties of SFEM are confirmed by numerical examples. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号