首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Motion capture cannot generate cartoon‐style animation directly. We emulate the rubber‐like exaggerations common in traditional character animation as a means of converting motion capture data into cartoon‐like movement. We achieve this using trajectory‐based motion exaggeration while allowing the violation of link‐length constraints. We extend this technique to obtain smooth, rubber‐like motion by dividing the original links into shorter sub‐links and computing the positions of joints using Bézier curve interpolation and a mass‐spring simulation. This method is fast enough to be used in real time.  相似文献   

2.
This paper presents a novel data‐driven expressive speech animation synthesis system with phoneme‐level controls. This system is based on a pre‐recorded facial motion capture database, where an actress was directed to recite a pre‐designed corpus with four facial expressions (neutral, happiness, anger and sadness). Given new phoneme‐aligned expressive speech and its emotion modifiers as inputs, a constrained dynamic programming algorithm is used to search for best‐matched captured motion clips from the processed facial motion database by minimizing a cost function. Users optionally specify ‘hard constraints’ (motion‐node constraints for expressing phoneme utterances) and ‘soft constraints’ (emotion modifiers) to guide this search process. We also introduce a phoneme–Isomap interface for visualizing and interacting phoneme clusters that are typically composed of thousands of facial motion capture frames. On top of this novel visualization interface, users can conveniently remove contaminated motion subsequences from a large facial motion dataset. Facial animation synthesis experiments and objective comparisons between synthesized facial motion and captured motion showed that this system is effective for producing realistic expressive speech animations.  相似文献   

3.
In this paper, we propose a novel motion controller for the online generation of natural character locomotion that adapts to new situations such as changing user control or applying external forces. This controller continuously estimates the next footstep while walking and running, and automatically switches the stepping strategy based on situational changes. To develop the controller, we devise a new physical model called an inverted‐pendulum‐based abstract model (IPAM). The proposed abstract model represents high‐dimensional character motions, inheriting the naturalness of captured motions by estimating the appropriate footstep location, speed and switching time at every frame. The estimation is achieved by a deep learning based regressor that extracts important features in captured motions. To validate the proposed controller, we train the model using captured motions of a human stopping, walking, and running in a limited space. Then, the motion controller generates human‐like locomotion with continuously varying speeds, transitions between walking and running, and collision response strategies in a cluttered space in real time.  相似文献   

4.
Abstract— The scanning‐backlight technique to improve the motion performance of LCDs is introduced. This technique, however, has some drawbacks such as double edges and color aberration, which may become visible in moving patterns. A method combining accurate measurements of temporal luminance transitions with the simulation of human‐eye tracking and spatiotemporal integration is used to model the motion‐induced profile of an edge moving on a scanning‐backlight LCD‐TV panel that exhibits the two drawbacks mentioned above. The model results are validated with a perception experiment including different refresh rates, and a high correspondence is found between the simulated apparent edge and the one that is perceived during actual motion. Apart from the motion‐induced edge blur, the perception of a moving line or square‐wave grating can also be predicted by the same method starting from the temporal impulse and frame‐sequential response curves, respectively. Motion‐induced image degradation is evaluated for both a scanning‐ and continuous‐backlight mode based on three different characteristics: edge blur, line spreading, and modulation depth of square‐wave grating. The results indicate that the scanning‐backlight mode results in better motion performance.  相似文献   

5.
Motion capture is mainly based on standard systems using optic, magnetic or sonic technologies. In this paper, the possibility to detect useful human motion based on new techniques using different types of body‐fixed sensors is shown. In particular, a combination of accelerometers and angular rate sensors (gyroscopes) showed a promising design for a hybrid kinematic sensor measuring the 2D kinematics of a body segment. These sensors together with a portable datalogger, and using simple biomechanical models, allow capture of outdoor and long‐term movements and overcome some limitations of the standard motion capture systems. Significant parameters of body motion, such as nature of motion (postural transitions, trunk rotation, sitting, standing, lying, walking, jumping) and its spatio‐temporal features (velocity, displacement, angular rotation, cadence and duration) have been evaluated and compared to the camera‐based system. Based on these parameters, the paper outlines the possibility to monitor physical activity and to perform gait analysis in the daily environment, and reviews several clinical investigations related to fall risk in the elderly, quality of life, orthopaedic outcome and sport performance. Taking advantage of all the potential of these body‐fixed sensors should be promising for motion capture and particularly in environments not suitable for standard technology such as in any field activity. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents the sliding‐mode control of a three‐degrees‐of‐freedom nanopositioner (Z, θx, θy). This nanopositioner is actuated by piezoelectric actuators. Capacitive gap sensors are used for position feedback. In order to design the feedback controller, the open‐loop characteristics of this nanopositioner are investigated. Based on the results of the investigation, each pair of piezoelectric actuators and corresponding gap sensors is treated as an independent system and modeled as a first‐order linear model coupled with hysteresis. When the model is identified and the hysteresis nonlinearity is linearized, a linear system model with uncertainty is used to design the controller. When designing the controller, the sliding‐mode disturbance (uncertainty) estimation and compensation scheme is used. The structure of the proposed controller is similar to that of a proportional integral derivative controller. Thus, it can be easily implemented. Experimental results show that 3‐nm tracking resolution can be obtained. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

7.
The ability to accurately achieve performance capture of athlete motion during competitive play in near real‐time promises to revolutionize not only broadcast sports graphics visualization and commentary, but also potentially performance analysis, sports medicine, fantasy sports and wagering. In this paper, we present a highly portable, non‐intrusive approach for synthesizing human athlete motion in competitive game‐play with lightweight instrumentation of both the athlete and field of play. Our data‐driven puppetry technique relies on a pre‐captured database of short segments of motion capture data to construct a motion graph augmented with interpolated motions and speed variations. An athlete's performed motion is synthesized by finding a related action sequence through the motion graph using a sparse set of measurements from the performance, acquired from both worn inertial and global location sensors. We demonstrate the efficacy of our approach in a challenging application scenario, with a high‐performance tennis athlete wearing one or more lightweight body‐worn accelerometers and a single overhead camera providing the athlete's global position and orientation data. However, the approach is flexible in both the number and variety of input sensor data used. The technique can also be adopted for searching a motion graph efficiently in linear time in alternative applications.  相似文献   

8.
In this paper a full‐order observer is suggested in order to achieve finite‐time reconstruction of the state vector for a class of linear systems with unknown inputs. The proposed design procedure is a combination of the approaches proposed by Lin & Wang [1] and Trinh & Ha [2]. The resulted observer has been improved, from the robustness point of view, by this paper's authors by using a novel and efficient method; it consists of adding three robustness terms which cancel the negative effect of the uncertainties which can appear in the system. The effectiveness of the suggested design algorithm is illustrated by a numerical example (aircraft lateral motion).  相似文献   

9.
Existing synthesis methods for closely interacting virtual characters relied on user‐specified constraints such as the reaching positions and the distance between body parts. In this paper, we present a novel method for synthesizing new interacting motion by composing two existing interacting motion samples without the need to specify the constraints manually. Our method automatically detects the type of interactions contained in the inputs and determines a suitable timing for the interaction composition by analyzing the spacetime relationships of the input characters. To preserve the features of the inputs in the synthesized interaction, the two inputs will be aligned and normalized according to the relative distance and orientation of the characters from the inputs. With a linear optimization method, the output is the optimal solution to preserve the close interaction of two characters and the local details of individual character behavior. The output animations demonstrated that our method is able to create interactions of new styles that combine the characteristics of the original inputs.  相似文献   

10.
Annotating unlabeled motion captures plays an important role in Computer Animation for motion analysis and motion edition purposes. Locomotion is a difficult case study as all the limbs of the human body are involved whereas a low‐dimensional global motion is performed. The oscillatory nature of the locomotion makes difficult the distinction between straight steps and turning ones, especially for subtle orientation changes. In this paper we propose to geometrically model the center of mass trajectory during locomotion as a C‐continuous circular arcs sequence. Our model accurately analyzes the global motion into the velocity‐curvature space. An experimental study demonstrates that an invariant law links curvature and velocity during straight walk. We finally illustrate how the resulting law can be used for annotation purposes: any unlabeled motion captured walk can be transformed into an annotated sequence of straight and turning steps. Several examples demonstrate the robustness of our approach and give comparison with classical threshold‐based techniques. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Horse locomotion exhibits rich variations in gaits and styles. Although there have been many approaches proposed for animating quadrupeds, there is not much research on synthesizing horse locomotion. In this paper, we present a horse locomotion synthesis approach. A user can arbitrarily change a horse's moving speed and direction, and our system would automatically adjust the horse's motion to fulfill the user's commands. At preprocessing, we manually capture horse locomotion data from Eadweard Muybridge's famous photographs of animal locomotion and expand the captured motion database to various speeds for each gait. At runtime, our approach automatically changes gaits based on speed, synthesizes the horse's root trajectory, and adjusts its body orientation based on the horse's turning direction. We propose an asynchronous time warping approach to handle gait transition, which is critical for generating realistic and controllable horse locomotion. Our experiments demonstrate that our system can produce smooth, rich, and controllable horse locomotion in real time. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
能量作为最基本的物理量之一, 联系着蛇形机器人蜿蜒运动的各个方面. 能量耗散描述了环境交互作用, 能量转换对应着运动的动力学过程, 能量平衡反映了蜿蜒运动的协调性. 提出一种基于能量的蛇形机器人蜿蜒运动控制方法-被动蜿蜒. 通过输出关节力矩控制机器人蜿蜒运动, 由机器人的能量状态调整力矩的大小. 仿真结果显示了被动蜿蜒控制下机器人的构形、角度、力矩、能量状态和转弯特性, 并对控制力矩进行了递归分析. 基于Optotrak运动测量系统构建了被动蜿蜒控制的模拟/物理混合实验系统. 进行了移动实验和拖动实验, 前者改变环境的摩擦特性,后者改变机器人的负载. 仿真和实验验证了蛇形机器人被动蜿蜒控制的有效性和适应性.  相似文献   

13.
This paper describes the application of linear‐parameter‐varying (LPV) control design techniques to the problem of slip control for two‐wheeled vehicles. A nonlinear multi‐body motorcycle simulator is employed to derive a control‐oriented dynamic model. It is shown that, in order to devise a robust controller with good performance, it is necessary to take into account the dependence of the model on the velocity and on the wheel slip. This dependence is modeled via an LPV system constructed from Jacobian linearizations at different velocities and slip values. The control problem is formulated as a model‐matching control problem within the LPV framework; a specific modification of the LPV control synthesis algorithm is proposed to alleviate controller interpolation problems. Linear and nonlinear simulations indicate that the synthesized controller achieves the required robustness and performance. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Compactly representing time‐varying geometries is an important issue in dynamic geometry processing. This paper proposes a framework of sparse localized decomposition for given animated meshes by analyzing the variation of edge lengths and dihedral angles (LAs) of the meshes. It first computes the length and dihedral angle of each edge for poses and then evaluates the difference (residuals) between the LAs of an arbitrary pose and their counterparts in a reference one. Performing sparse localized decomposition on the residuals yields a set of components which can perfectly capture local motion of articulations. It supports intuitive articulation motion editing through manipulating the blending coefficients of these components. To robustly reconstruct poses from altered LAs, we devise a connection‐map‐based algorithm which consists of two steps of linear optimization. A variety of experiments show that our decomposition is truly localized with respect to rotational motions and outperforms state‐of‐the‐art approaches in precisely capturing local articulated motion.  相似文献   

15.
This paper presents a new sliding control to deal with linear systems suffering from matched‐to‐part disturbance and mismatched disturbance. Only parts of the control inputs are designed using the sliding‐mode theory in order to eliminate the matched‐to‐part disturbance. Based on an important criterion, the proposed controller employs the applicable genetic algorithm to effectively reduce the influence of mismatched disturbance during sliding motion. A numeric example is used to demonstrate the effectiveness of the developed controller.  相似文献   

16.
Motion capture sequences may contain erroneous data, especially when the motion is complex or performers are interacting closely and occlusions are frequent. Common practice is to have specialists visually detect the abnormalities and fix them manually. In this paper, we present a method to automatically analyze and fix motion capture sequences by using self‐similarity analysis. The premise of this work is that human motion data has a high‐degree of self‐similarity. Therefore, given enough motion data, erroneous motions are distinct when compared to other motions. We utilize motion‐words that consist of short sequences of transformations of groups of joints around a given motion frame. We search for the K‐nearest neighbors (KNN) set of each word using dynamic time warping and use it to detect and fix erroneous motions automatically. We demonstrate the effectiveness of our method in various examples, and evaluate by comparing to alternative methods and to manual cleaning.  相似文献   

17.
A novel model‐free iterative adaptive controller is presented for low‐power control of piezoelectric actuators. The controller uses simple adaptation rules based on known general behavior of piezoelectric actuators to adjust on‐off switching times to drive piezoelectric actuators through a desired transient step motion. Adaptation rules are based on small numbers of measurements taken during each iteration of the actuator movement. Combined with the use of only on‐off control inputs, controller implementation can be possible at much lower overall power levels than would be needed to implement a conventional control strategy such as through pulse‐width‐modulation (PWM) with real‐time feedback. Such power savings are particularly important for the intended controller application to piezoelectric microactuators driving autonomous terrestrial micro‐robots. A method for predicting convergence of systems with nominally linear dynamics and unknown, bounded nonlinearities is described, and applied to a sample target piezoelectric actuator. The controller is tested in simulation and experimentally on a piezoelectric cantilever actuator, and shows predicted convergence to the desired response. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

18.
运动信息是视频中最重要的特征之一.本文提出了一种新颖的基于运动的视频层次化分析框架.为了揭示视频流中的运动关系和在拍摄过程摄像机的运动信息即拍摄者的兴趣所在,提出了视频层次化结构来对视频流进行描述和检索.该运动层次化结构引入一个新的概念:基本运动单元(Basic Motion Unit,BMU).BMU反映的是MPEG-7中定义的基本摄像机操作,这样就可以把视频分割成BMU的集合.在BMU的基础上发现并挖掘出视频流中潜在的运动语义模式,最后根据运动活力(Motion Activity)将BMU聚类为运动节奏快慢的运动活力单元(Motion Activity Unit,MAU).该基于运动的视频分析框架不仅能够直观地捕获视频流在拍摄过程中拍摄者的注意力,而且为视频流的快速浏览和检索提供了新的思路.  相似文献   

19.
This study aims to develop a controller for use in the online simulation of two interacting characters. This controller is capable of generalizing two sets of interaction motions of the two characters based on the relationships between the characters. The controller can exhibit similar motions to a captured human motion while reacting in a natural way to the opponent character in real time. To achieve this, we propose a new type of physical model called a coupled inverted pendulum on carts that comprises two inverted pendulum on a cart models, one for each individual, which are coupled by a relationship model. The proposed framework is divided into two steps: motion analysis and motion synthesis. Motion analysis is an offline preprocessing step, which optimizes the control parameters to move the proposed model along a motion capture trajectory of two interacting humans. The optimization procedure generates a coupled pendulum trajectory which represents the relationship between two characters for each frame, and is used as a reference in the synthesis step. In the motion synthesis step, a new coupled pendulum trajectory is planned reflecting the effects of the physical interaction, and the captured reference motions are edited based on the planned trajectory produced by the coupled pendulum trajectory generator. To validate the proposed framework, we used a motion capture data set showing two people performing kickboxing. The proposed controller is able to generalize the behaviors of two humans to different situations such as different speeds and turning speeds in a realistic way in real time.  相似文献   

20.
This paper is concerned with the observer‐based H control for continuous‐time networked control systems (NCSs) considering packet dropouts and network‐induced delays. The packet dropouts and network‐induced delays in the sensor‐to‐controller (S‐C) channel and network‐induced delays in the controller‐to‐actuator (C‐A) channel are taken into full consideration. By taking the non‐uniform distribution characteristic of the arrival instants of actually adopted controller inputs into account, a new model for continuous‐time NCSs is established. To reduce the conservatism of modelling, a linear estimation‐based measurement output estimation method is introduced. Based on the newly established model and a Lyapunov functional, new controller design methods are proposed. A numerical example is given to illustrate the effectiveness and merits of the derived results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号