首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MS‐271, produced by Streptomyces sp. M‐271, is a lasso peptide natural product comprising 21 amino acid residues with a d ‐tryptophan at its C terminus. Because lasso peptides are ribosomal peptides, the biosynthesis of MS‐271, especially the mechanism of d ‐Trp introduction, is of great interest. The MS‐271 biosynthetic gene cluster was identified by draft genome sequencing of the MS‐271 producer, and it was revealed that the precursor peptide contains all 21 amino acid residues including the C‐terminal tryptophan. This suggested that the d ‐Trp residue is introduced by epimerization. Genes for modification enzymes such as a macrolactam synthetase (mslC), precursor peptide recognition element (mslB1), cysteine protease (mslB2), disulfide oxidoreductases (mslE, mslF), and a protein of unknown function (mslH) were found in the flanking region of the precursor peptide gene. Although obvious epimerase genes were absent in the cluster, heterologous expression of the putative MS‐271 cluster in Streptomyces lividans showed that it contains all the necessary genes for MS‐271 production including a gene for a new peptide epimerase. Furthermore, a gene‐deletion experiment indicated that MslB1, ‐B2, ‐C and ‐H were indispensable for MS‐271 production and that some interactions of the biosynthetic enzymes were essential for the biosynthesis of MS‐271.  相似文献   

2.
The unique five‐membered aminocyclitol core of the antitumor antibiotic pactamycin originates from d ‐glucose, so unprecedented enzymatic modifications of the sugar intermediate are involved in the biosynthesis. However, the order of the modification reactions remains elusive. Herein, we examined the timing of introduction of an amino group into certain sugar‐derived intermediates by using recombinant enzymes that were encoded in the pactamycin biosynthesis gene cluster. We found that the NAD+‐dependent alcohol dehydrogenase PctP and pyridoxal 5′‐phosphate dependent aminotransferase PctC converted N‐acetyl‐d ‐glucosaminyl‐3‐aminoacetophonone into 3′‐amino‐3′‐deoxy‐N‐acetyl‐d ‐glucosaminyl‐3‐aminoacetophenone. Further, N‐acetyl‐d ‐glucosaminyl‐3‐aminophenyl‐β‐oxopropanoic acid ethyl ester was converted into the corresponding 3′‐amino derivative. However, PctP did not oxidize most of the tested d ‐glucose derivatives, including UDP‐GlcNAc. Thus, modification of the GlcNAc moiety in pactamycin biosynthesis appears to occur after the glycosylation of aniline derivatives.  相似文献   

3.
The gene clusters responsible for the biosynthesis of two antitumor antibiotics, ravidomycin and chrysomycin, have been cloned from Streptomyces ravidus and Streptomyces albaduncus, respectively. Sequencing of the 33.28 kb DNA region of the cosmid cosRav32 and the 34.65 kb DNA region of cosChry1‐1 and cosChryF2 revealed 36 and 35 open reading frames (ORFs), respectively, harboring tandem sets of type II polyketide synthase (PKS) genes, D ‐ravidosamine and D ‐virenose biosynthetic genes, post‐PKS tailoring genes, regulatory genes, and genes of unknown function. The isolated ravidomycin gene cluster was confirmed to be involved in ravidomycin biosynthesis through the production of a new analogue of ravidomycin along with anticipated pathway intermediates and biosynthetic shunt products upon heterologous expression of the cosmid, cosRav32, in Streptomyces lividans TK24. The identity of the cluster was further verified through cross complementation of gilvocarcin V (GV) mutants. Similarly, the chrysomycin gene cluster was demonstrated to be indirectly involved in chrysomycin biosynthesis through cross‐complementation of gilvocarcin mutants deficient in the oxygenases GilOII, GilOIII, and GilOIV with the respective chrysomycin monooxygenase homologues. The ravidomycin glycosyltransferase (RavGT) appears to be able to transfer both amino‐ and neutral sugars, exemplified through the structurally distinct 6‐membered D ‐ravidosamine and 5‐membered D ‐fucofuranose, to the coumarin‐based polyketide derived backbone. These results expand the library of biosynthetic genes involved in the biosyntheses of gilvocarcin class compounds that can be used to generate novel analogues through combinatorial biosynthesis.  相似文献   

4.
Sch47554 and Sch47555 are antifungal compounds from Streptomyces sp. SCC‐2136. The availability of the biosynthetic gene cluster made it possible to track genes that encode biosynthetic enzymes responsible for the structural features of these two angucyclines. Sugar moieties play important roles in the biological activities of many natural products. An investigation into glycosyltransferases (GTs) might potentially help to diversify pharmaceutically significant drugs through combinatorial biosynthesis. Sequence analysis indicates that SchS7 is a putative C‐GT, whereas SchS9 and SchS10 are proposed to be O‐GTs. In this study, the roles of these three GTs in the biosynthesis of Sch47554 and Sch47555 are characterized. Coexpression of the aglycone and sugar biosynthetic genes with schS7 in Streptomyces lividans K4 resulted in the production of C‐glycosylated rabelomycin, which revealed that SchS7 attached a d ‐amicetose moiety to the aglycone core structure at the C‐9 position. Gene inactivation studies revealed that subsequent glycosylation steps took place in a sequential manner, in which SchS9 first attached either an l ‐aculose or l ‐amicetose moiety to 4′‐OH of the C‐glycosylated aglycone, then SchS10 transferred an l ‐aculose moiety to 3‐OH of the angucycline core.  相似文献   

5.
Griseoviridin (GV) and viridogrisein (VG, also referred to as etamycin), produced by Streptomyces griseoviridis, are two chemically unrelated compounds belonging to the streptogramin family. Both of these natural products demonstrate broad‐spectrum antibacterial activity and constitute excellent candidates for future drug development. To elucidate the biosynthetic machinery associated with production of these two unique antibiotics, the gene cluster responsible for both GV and VG production was identified within the Streptomyces griseoviridis genome and characterized, and its function in GV and VG biosynthesis was confirmed by inactivation of 30 genes and complementation experiments. This sgv gene cluster is localized to a 105 kb DNA region that consists of 36 open reading frames (ORFs), including four nonribosomal peptide synthetases (NRPSs) for VG biosynthesis and a set of hybrid polyketide synthases (PKS)‐NRPSs with a discrete acyltransferase (AT), SgvQ, to assemble the GV backbone. The enzyme encoding genes for VG versus GV biosynthesis are separated into distinct “halves” of the cluster. A series of four genes: sgvA, sgvB, sgvC, and sgvK, were found downstream of the PKS‐NRPS; these likely code for construction of a γ‐butyrolactone (GBL)‐like molecule. GBLs and the corresponding GBL receptor systems are the highest ranked regulators that are able to coordinate the two streptomyces antibiotic regulatory protein (SARP) family positive regulators SgvR2 and SgvR3; both are key biosynthetic activators. Models of GV, VG, and GBL biosynthesis were proposed by using functional gene assignments, determined on the basis of bioinformatics analysis and further supported by in vivo gene inactivation experiments. Overall, this work provides new insights into the biosyntheses of the GV and VG streptogramins that are potentially applicable to a host of combinatorial biosynthetic scenarios.  相似文献   

6.
Nearly 50 naturally occurring carbapenem β‐lactam antibiotics, most produced by Streptomyces, have been identified. The structural diversity of these compounds is limited to variance of the C‐2 and C‐6 side chains as well as the stereochemistry at C‐5/C‐6. These structural motifs are of interest both for their antibiotic effects and their biosynthesis. Although the thienamycin gene cluster is the only active gene cluster publically available in this group, more comparative information is needed to understand the genetic basis of these structural differences. We report here the identification of MM 4550, a member of the olivanic acids, as the major carbapenem produced by Streptomyces argenteolus ATCC 11009. Its gene cluster was also identified by degenerate PCR and targeted gene inactivation. Sequence analysis revealed that the genes encoding the biosynthesis of the bicyclic core and the C‐6 and C‐2 side chains are well conserved in the MM 4550 and thienamycin gene clusters. Three new genes, cmmSu, cmm17 and cmmPah were found in the new cluster, and their putative functions in the sulfonation and epimerization of MM 4550 are proposed. Gene inactivation showed that, in addition to cmmI, two new genes, cmm22 and ‐23, encode a two‐component response system thought to regulate the production of MM 4550. Overexpression of cmmI, cmm22 and cmm23 promoted MM 4550 production in an engineered strain. Finally, the involvement and putative roles of all genes in the MM 4550 cluster are proposed based on the results of bioinformatics analysis, gene inactivation, and analysis of disruption mutants. Overall, the differences between the thienamycin and MM 4550 gene clusters are reflected in characteristic structural elements and provide new insights into the biosynthesis of the complex carbapenems.  相似文献   

7.
S‐adenosyl‐l ‐methionine (SAM)‐dependent methyltransfer is a common biosynthetic strategy to modify natural products. We investigated the previously uncharacterized Aspergillus fumigatus methyltransferase FtpM, which is encoded next to the bimodular fumaric acid amide synthetase FtpA. Structure elucidation of two new A. fumigatus natural products, the 1,11‐dimethyl esters of fumaryl‐l ‐tyrosine and fumaryl‐l ‐phenylalanine, together with ftpM gene disruption suggested that FtpM catalyzes iterative methylation. Final evidence that a single enzyme repeatedly acts on fumaric acid amides came from an in vitro biochemical investigation with recombinantly produced FtpM. Size‐exclusion chromatography indicated that this methyltransferase is active as a dimer. As ftpA and ftpM homologues are found clustered in other fungi, we expect our work will help to identify and annotate natural product biosynthesis genes in various species.  相似文献   

8.
A gene encoding a putative dimodular nonribosomal peptide synthetase (NRPS) was identified within a gene cluster of Aspergillus fumigatus, a species reported to produce fumitremorgins and other prenylated alkaloids. The gene was deleted and overexpressed in the genome reference strain Af293, and was also expressed in the naïve host Aspergillus nidulans, which lacks the equivalent gene cluster. While neither fumitremorgins nor the dipeptide brevianamide F (cyclo‐L ‐Trp‐L ‐Pro), an early intermediate, were detected in wild‐type and deletion strains of A. fumigatus, brevianamide F accumulated in fungal cultures following increased expression of the NRPS gene in both A. fumigatus and A. nidulans. We conclude that the gene Afu8g00170, named ftmA, encodes the NRPS brevianamide synthetase. Brevianamide F is the precursor of a variety of fungal prenylated alkaloids with biological activity, including fumitremorgins A, B and C and tryprostatin B.  相似文献   

9.
Acyclic serinol derivatives are useful scaffolds for tethering dyes within DNA duplexes. Here we synthesised an inverse l ‐threoninol (il ‐threoninol) scaffold and compared its effect on DNA duplex stability to other acyclic artificial nucleic acid scaffolds that are based on d ‐threoninol, l ‐threoninol, and serinol. When planar trans‐azobenzene was incorporated into the DNA duplex through a single bulge‐like motif (the wedge), the il ‐threoninol scaffold stabilised the duplex most efficiently. When scaffolds were incorporated in complementary positions (dimer motif) or in three adjacent positions (cluster motif), d ‐threoninol was the most stabilising. CD spectra indicated that the effect of scaffold on the duplex stability was closely related to the winding induced by each scaffold. When trans‐azobenzene was photo‐isomerised to non‐planar cis‐azobenzene, il ‐threoninol destabilised the duplex most strongly, irrespective of the number of artificial residues incorporated. The properties of the il ‐threoninol scaffold make it a useful tether for dyes or other functionalities.  相似文献   

10.
Feglymycin, a peptide antibiotic produced by Streptomyces sp. DSM 11171, consists mostly of nonproteinogenic phenylglycine‐type amino acids. It possesses antibacterial activity against methicillin‐resistant Staphylococcus aureus strains and antiviral activity against HIV. Inhibition of the early steps of bacterial peptidoglycan synthesis indicated a mode of action different from those of other peptide antibiotics. Here we describe the identification and assignment of the feglymycin (feg) biosynthesis gene cluster, which codes for a 13‐module nonribosomal peptide synthetase (NRPS) system. Inactivation of an NRPS gene and supplementation of a hydroxymandelate oxidase mutant with the amino acid l ‐Hpg proved the identity of the feg cluster. Feeding of Hpg‐related unnatural amino acids was not successful. This characterization of the feg cluster is an important step to understanding the biosynthesis of this potent antibacterial peptide.  相似文献   

11.
Indolizidine alkaloids, which have versatile bioactivities, are produced by various organisms. Although the biosynthesis of some indolizidine alkaloids has been studied, the enzymatic machinery for their biosynthesis in Streptomyces remains elusive. Here, we report the identification and analysis of the biosynthetic gene cluster for iminimycin, an indolizidine alkaloid with a 6-5-3 tricyclic system containing an iminium cation from Streptomyces griseus. The gene cluster has 22 genes, including four genes encoding polyketide synthases (PKSs), which consist of eight modules in total. In vitro analysis of the first module revealed that its acyltransferase domain selects malonyl-CoA, although predicted to select methylmalonyl-CoA. Inactivation of seven tailoring enzyme-encoding genes and structural elucidation of four compounds accumulated in mutants provided important insights into iminimycin biosynthesis, although some of these compounds appeared to be shunt products. This study expands our knowledge of the biosynthetic machinery of indolizidine alkaloids and the enzymatic chemistry of PKS.  相似文献   

12.
Aurachin RE is a prenylated quinoline antibiotic that was first isolated from the genus Rhodococcus. It shows potent antibacterial activity against a variety of Gram‐positive bacteria. Here we have identified a minimal biosynthesis gene cluster for aurachin RE in Rhodococcus erythropolis JCM 6824 by using random transposon mutagenesis and heterologous production. The Rhodococcus aurachin (rau) gene cluster consists of genes encoding cytochrome P450 (rauA), prenyltransferase, polyketide synthase, and farnesyl pyrophosphate synthase, as well as others including genes involved in regulation and transport. Markerless gene disruption of rauA resulted in the complete loss of aurachin RE production and in the accumulation of a new aurachin derivative lacking the N‐hydroxy group. When the recombinant RauA was expressed in Escherichia coli, it catalyzed N‐hydroxylation of the derivative to form aurachin RE. This study establishes the biosynthetic pathway of aurachin RE and provides experimental evidence for the role of P450 RauA in catalyzing N‐hydroxylation of the quinoline ring, which is indispensable for the antibacterial activity of aurachin RE.  相似文献   

13.
Legionella pneumophila, the causative agent of Legionnaires' disease, is a Gram‐negative gammaproteobacterial pathogen that infects and intracellularly replicates in human macrophages and a variety of protozoa. L. pneumophila encodes an orphan biosynthetic gene cluster (BGC) that contains isocyanide‐associated biosynthetic genes and is upregulated during infection. Because isocyanide‐functionalized metabolites are known to harbor invertebrate innate immunosuppressive activities in bacterial pathogen–insect interactions, we used pathway‐targeted molecular networking and tetrazine‐based chemoseletive ligation chemistry to characterize the metabolites from the orphan pathway in L. pneumophila. We also assessed their intracellular growth contributions in an amoeba and in murine bone‐marrow‐derived macrophages. Unexpectedly, two distinct groups of aromatic amino acid‐derived metabolites were identified from the pathway, including a known tyrosine‐derived isocyanide and a family of new N‐acyl‐l ‐histidine metabolites.  相似文献   

14.
Macrolide‐pipecolate natural products, such as rapamycin ( 1 ) and FK‐506 ( 2 ), are renowned modulators of FK506‐binding proteins (FKBPs). The nocardiopsins, from Nocardiopsis sp. CMB‐M0232, are the newest members of this structural class. Here, the biosynthetic pathway for nocardiopsins A–D ( 4 – 7 ) is revealed by cloning, sequencing, and bioinformatic analyses of the nsn gene cluster. In vitro evaluation of recombinant NsnL revealed that this lysine cyclodeaminase catalyzes the conversion of L ‐lysine into the L ‐pipecolic acid incorporated into 4 and 5 . Bioinformatic analyses supported the conjecture that a linear nocardiopsin precursor is equipped with the hydroxy group required for macrolide closure in a previously unobserved manner by employing a P450 epoxidase (NsnF) and limonene epoxide hydrolase homologue (NsnG). The nsn cluster also encodes candidates for tetrahydrofuran group biosynthesis. The nocardiopsin pathway provides opportunities for engineering of FKBP‐binding metabolites and for probing new enzymology in nature's polyketide tailoring arsenal.  相似文献   

15.
The ast gene cluster (GenBank accession numbers KF813023.1 and KP284551) was characterized to be responsible for the biosynthesis of ansatrienins in Streptomyces sp. XZQH13, which contains astC, astF1, and astF2 genes involved in the assembly of the N‐cyclohexanoyl d ‐alanyl side chain and the hydroxylation of C‐19, respectively. Further to investigating the biosynthetic mechanism of ansatrienins, herein we constructed the mutant strains XZQH13OEΔastF2 and XZQH13OEΔastCΔastF2. Three new ansatrienin analogues, namely, ansatrienols I–K ( 1 – 3 ), along with trienomycinol ( 4 ) and 3‐O‐demethyltrienomycinol ( 5 ), were isolated from the XZQH13OEΔastCΔastF2 strain, and trienomycin A ( 6 ) and trienomycin G ( 7 ) were isolated from the XZQH13OEΔastF2 strain. Their structures were determined by a combination of high‐resolution MS (ESI) and 1D and 2D NMR spectroscopy. Accordingly, a pathway for the biosynthesis of these new ansatrienins was proposed.  相似文献   

16.
Coumermycin A1 is an aminocoumarin antibiotic produced by Streptomyces rishiriensis. It contains three pyrrole rings, that is, two terminal 5‐methyl‐pyrrole‐2‐carboxyl moieties and a central 3‐methylpyrrole‐2,4‐dicarboxylic acid moiety. The biosynthesis of the terminal pyrrole moieties has been elucidated previously. However, the biosynthetic precursors of the central pyrrole moiety have remained unknown, and none of the genes or enzymes involved in its formation has been identified. We now show that five genes, contained in a contiguous 4.7 kb region within the coumermycin biosynthetic gene cluster, are required for the biosynthesis of this central pyrrole moiety. Each of these genes was deleted individually, resulting in a strong reduction or an abolishment of coumermycin production. External feeding of the central pyrrole moiety restored coumermycin production. One of these genes shows similarity to L ‐threonine kinase genes. Feeding of [U‐13C,15N]L ‐threonine and 13C NMR analysis of the resulting compound unequivocally proved that threonine was incorporated intact into the central pyrrole (19 % enrichment) to provide the heterocyclic nitrogen as well as four of the seven carbons of this moiety. Therefore, this pyrrole is formed via a new, hitherto unknown biosynthetic pathway. A hypothesis for the reaction sequence leading to the central pyrrole moiety of coumermycin A1 is presented.  相似文献   

17.
18.
The characterization of TDP‐α‐d ‐glucose dehydrogenase (AtmS8), TDP‐α‐d ‐glucuronic acid decarboxylase (AtmS9), and TDP‐4‐keto‐α‐d ‐xylose 2,3‐dehydratase (AtmS14), involved in Actinomadura melliaura AT2433 aminodideoxypentose biosynthesis, is reported. This study provides the first biochemical evidence that both deoxypentose and deoxyhexose biosynthetic pathways share common strategies for sugar 2,3‐dehydration/reduction and implicates the sugar nucleotide base specificity of AtmS14 as a potential mechanism for sugar nucleotide commitment to secondary metabolism. In addition, a re‐evaluation of the AtmS9 homologue involved in calicheamicin aminodeoxypentose biosynthesis (CalS9) reveals that CalS9 catalyzes UDP‐4‐keto‐α‐d ‐xylose as the predominant product, rather than UDP‐α‐d ‐xylose as previously reported. Cumulatively, this work provides additional fundamental insights regarding the biosynthesis of novel pentoses attached to complex bacterial secondary metabolites.  相似文献   

19.
Himeic acid A, which is produced by the marine fungus Aspergillus japonicus MF275, is a specific inhibitor of the ubiquitin‐activating enzyme E1 in the ubiquitin–proteasome system. To elucidate the mechanism of himeic acid biosynthesis, feeding experiments with labeled precursors have been performed. The long fatty acyl side chain attached to the pyrone ring is of polyketide origin, whereas the amide substituent is derived from leucine. These results suggest that a polyketide synthase–nonribosomal peptide synthase (PKS‐NRPS) is involved in himeic acid biosynthesis. A candidate gene cluster was selected from the results of genome sequencing analysis. Disruption of the PKS‐NRPS gene by Agrobacterium‐mediated transformation confirms that HimA PKS‐NRPS is involved in himeic acid biosynthesis. Thus, the him biosynthetic gene cluster for himeic acid in A. japonicus MF275 has been identified.  相似文献   

20.
Mycophenolic acid (MPA, 1 ) is a clinically important immunosuppressant. In this report, a gene cluster mpa′ responsible for the biosynthesis of 1 was identified from Penicillium brevicompactum NRRL 864. The S‐adenosyl‐L ‐methionine‐dependent (SAM‐dependent) O‐methyltransferase encoded by the mpaG′ gene was functionally and kinetically characterized in vitro. MpaG′ catalyzes the methylation of demethylmycophenolic acid (DMMPA, 6 ) to form 1 . It also showed significant substrate flexibility by methylating two structural derivatives of 6 prepared by organic synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号