首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonribosomal peptide synthetases (NRPSs), which are responsible for synthesizing many medicinally important natural products, frequently use adenylation domain activators (ADAs) to promote substrate loading. Although ADAs are usually MbtH‐like proteins (MLPs), a new type of ADA appears to promote an NRPS‐dependent incorporation of a dihydropyrrole unit into sibiromycin. The adenylation and thiolation didomain of the NRPS SibD catalyzes the adenylation of a limited number of amino acids including l ‐Tyr, the precursor in dihydropyrrole biosynthesis, as determined by a standard radioactivity exchange assay. LC‐MS/MS analysis confirmed loading of l ‐Tyr onto the thiolation domain. SibB, a small protein with no prior functional assignment or sequence homology to MLPs, was found to promote the exchange activity. MLPs from bacteria expressing homologous biosynthetic pathways were unable to replace this function of SibB. The discovery of this new type of ADA demonstrates the importance of searching beyond the conventional MLP standard for proteins affecting NRPS activity.  相似文献   

2.
Fungal hybrid enzymes consisting of a polyketide synthase (PKS) and a nonribosomal peptide synthetase (NRPS) module are involved in the biosynthesis of a vast array of ecologically and medicinally relevant natural products. Whereas a dozen gene clusters could be assigned to the requisite PKS–NRPS pathways, the programming of the multifunctional enzymes is still enigmatic. Through engineering and heterologously expressing a chimera of PKS (lovastatin synthase, LovB) and NRPS (cytochalasin synthase, CheA) in Aspergillus terreus, we noted the potential incompatibility of a fungal highly reducing PKS (hrPKS) with the NRPS component of fungal PKS–NRPS hybrids. To rationalize the unexpected outcome of the gene fusion experiments, we conducted extensive bioinformatic analyses of fungal PKS–NRPS hybrids and LovB‐type PKS. From motif studies and the function of the engineered chimeras, a noncanonical function of C‐terminal condensation (C) domains in truncated PKS–NRPS homologues was inferred. More importantly, sequence alignments and phylogenetic trees revealed an evolutionary imprint of the PKS–NRPS domains, which reflect the evolutionary history of the entire megasynthase. Furthermore, a detailed investigation of C and adenylation (A) domains provides support for a scenario in which not only the A domain but also the C domain participates in amino acid selection. These findings shed new light on the complex code of this emerging class of multifunctional enzymes and will greatly facilitate future combinatorial biosynthesis and pathway engineering approaches towards natural product analogues.  相似文献   

3.
S‐adenosyl‐l ‐methionine (SAM)‐dependent methyltransfer is a common biosynthetic strategy to modify natural products. We investigated the previously uncharacterized Aspergillus fumigatus methyltransferase FtpM, which is encoded next to the bimodular fumaric acid amide synthetase FtpA. Structure elucidation of two new A. fumigatus natural products, the 1,11‐dimethyl esters of fumaryl‐l ‐tyrosine and fumaryl‐l ‐phenylalanine, together with ftpM gene disruption suggested that FtpM catalyzes iterative methylation. Final evidence that a single enzyme repeatedly acts on fumaric acid amides came from an in vitro biochemical investigation with recombinantly produced FtpM. Size‐exclusion chromatography indicated that this methyltransferase is active as a dimer. As ftpA and ftpM homologues are found clustered in other fungi, we expect our work will help to identify and annotate natural product biosynthesis genes in various species.  相似文献   

4.
Nonribosomal peptides synthetases (NRPSs), which are multifunctional mega‐enzymes producing many biologically active metabolites, are ideal targets for enzyme engineering. NRPS adenylation domains play a critical role in selecting/activating the amino acids to be transferred to downstream NRPS domains in the biosynthesis of natural products. Both monofunctional and bifunctional A domains interrupted with an auxiliary domain are found in nature. Here, we show that a bifunctional interrupted A domain can be uninterrupted by deleting its methyltransferase auxiliary domain portion to make an active monofunctional enzyme. We also demonstrate that a portion of an auxiliary domain with almost no sequence identity to the original auxiliary domain can be insert into naturally interrupted A domain to develop a new active bifunctional A domain with increased substrate profile. This work shows promise for the creation of new interrupted A domains in engineered NRPS enzymes.  相似文献   

5.
Feglymycin, a peptide antibiotic produced by Streptomyces sp. DSM 11171, consists mostly of nonproteinogenic phenylglycine‐type amino acids. It possesses antibacterial activity against methicillin‐resistant Staphylococcus aureus strains and antiviral activity against HIV. Inhibition of the early steps of bacterial peptidoglycan synthesis indicated a mode of action different from those of other peptide antibiotics. Here we describe the identification and assignment of the feglymycin (feg) biosynthesis gene cluster, which codes for a 13‐module nonribosomal peptide synthetase (NRPS) system. Inactivation of an NRPS gene and supplementation of a hydroxymandelate oxidase mutant with the amino acid l ‐Hpg proved the identity of the feg cluster. Feeding of Hpg‐related unnatural amino acids was not successful. This characterization of the feg cluster is an important step to understanding the biosynthesis of this potent antibacterial peptide.  相似文献   

6.
Natural products that contain amino‐acid‐derived (Cys, Ser, Thr) heterocycles are ubiquitous in nature, yet key aspects of their biosynthesis remain undefined. Cyanobactins are heterocyclic ribosomal peptide natural products from cyanobacteria, including symbiotic bacteria living with marine ascidians. In contrast to other ribosomal peptide heterocyclases that have been studied, the cyanobactin heterocyclase is a single protein that does not require an oxidase enzyme. Using this simplifying condition, we provide new evidence to support the hypothesis that these enzymes are molecular machines that use ATP in a product binding or orientation cycle. Further, we show that both protease inhibitors and ATP analogues inhibit heterocyclization and define the order of biochemical steps in the cyanobactin biosynthetic pathway. The cyanobactin pathway enzymes, PatD and TruD, are thiazoline and oxazoline synthetases.  相似文献   

7.
β‐Methyltryptophans (β‐mTrp) are precursors in the biosynthesis of bioactive natural products and are used in the synthesis of peptidomimetic‐based therapeutics. Currently β‐mTrp is produced by inefficient multistep synthetic methods. Here we demonstrate how an engineered variant of tryptophan synthase from Salmonella (StTrpS) can catalyse the efficient condensation of l ‐threonine and various indoles to generate β‐mTrp and derivatives in a single step. Although l ‐serine is the natural substrate for TrpS, targeted mutagenesis of the StTrpS active site provided a variant (βL166V) that can better accommodate l ‐Thr as a substrate. The condensation of l ‐Thr and indole proceeds with retention of configuration at both α‐ and β‐positions to give (2S,3S)‐β‐mTrp. The integration of StTrpS (βL166V) with l ‐amino acid oxidase, halogenase enzymes and palladium chemocatalysts provides access to further d ‐configured and regioselectively halogenated or arylated β‐mTrp derivatives.  相似文献   

8.
Aromatic l ‐amino acid decarboxylases (AADCs) catalyze the release of CO2 from proteinogenic and non‐proteinogenic l ‐amino acid substrates and are involved in pathways that biosynthesize neurotransmitters or bioactive natural products. In contrast to AADCs from animals and plants, fungal AADCs have received very little attention. Here, we report on the in vitro characterization of heterologously produced Ceriporiopsis subvermispora AADC, now referred to as CsTDC, which is the first characterized basidiomycete AADC. This study identified the enzyme as a decarboxylase that is strictly specific for l ‐tryptophan and 5‐hydroxy‐l ‐tryptophan. The tdc gene was subjected to saturation mutagenesis so as to vary the key active site residue, Gly351. Aliphatic amino acid residues, l ‐serine, or l ‐threonine at position 351 added l ‐tyrosine and 3,4‐dihydroxy‐l ‐phenylalanine (l ‐DOPA) decarboxylase activity while retaining stereospecificity and l ‐tryptophan decarboxylase activity.  相似文献   

9.
The biosynthesis of the potent cyanobacterial hepatotoxin microcystin involves isopeptide bond formation through the carboxylic acid side chains of d ‐glutamate and β‐methyl d ‐aspartate. Analysis of the in vitro activation profiles of the two corresponding adenylation domains, McyE‐A and McyB‐A2, either in a didomain or a tridomain context with the cognate thiolation domain and the upstream condensation domain revealed that substrate activation of both domains strictly depended on the presence of the condensation domains. We further identified two key amino acids in the binding pockets of both adenylation domains that could serve as a bioinformatic signature of isopeptide bond‐forming modules incorporating d ‐glutamate or d ‐aspartate. Our findings further contribute to the understanding of the multifaceted role of condensation domains in nonribosomal peptide synthetase assembly lines.  相似文献   

10.
Valinomycin was recently reported to be the most potent agent against severe acute respiratory-syndrome coronavirus (SARS-CoV) in infected Vero E6 cells. Aimed at generating analogues by metabolic engineering, the valinomycin biosynthetic gene cluster has been cloned from Streptomyces tsusimaensis ATCC 15141. Targeted disruption of a nonribosomal peptide synthetase (NRPS) gene abolishes valinomycin production, which confirms its predicted nonribosomal-peptide origin. Sequence analysis of the NRPS system reveals four distinctive modules, two of which contain unusual domain organizations that are presumably involved in the generation of biosynthetic precursors D-alpha-hydroxyisovaleric acid and L-lactic acid. The respective adenylation domains in these two modules contain novel substrate-specificity-conferring codes that might specify for a class of hydroxyl acids for the biosynthesis of the depsipeptide natural products.  相似文献   

11.
Mutant α‐amino‐ε‐caprolactam (ACL) racemase (L19V/L78T) from Achromobacter obae with improved substrate specificity toward phenylalaninamide was obtained by directed evolution. The mutant ACL racemase and thermostable mutant D ‐amino acid amidase (DaaA) from Ochrobactrum anthropi SV3 co‐expressed in Escherichia coli (pACLmut/pDBFB40) were utilized for synthesis of (R)‐phenylalanine and non‐natural (R)‐phenylalanine derivatives (4‐OH, 4‐F, 3‐F, and 2‐F‐Phe) by dynamic kinetic resolution (DKR). Recombinant E. coli with DaaA and mutant ACL racemase genes catalyzed the synthesis of (R)‐phenylalanine with 84% yield and 99% ee from (RS)‐phenylalaninamide (400 mM) in 22 h. (R)‐Tyrosine and 4‐fluoro‐(R)‐phenylalanine were also efficiently synthesized from the corresponding amide compounds. We also co‐expresed two genes encoding mutant ACL racemase and L ‐amino acid amidase from Brevundimonas diminuta in E. coli and performed the efficient production of various (S)‐phenylalanine derivatives. Moreover, 2‐aminophenylpropionitrile was converted to (R)‐phenylalanine by DKR using a combination of the non‐stereoselective nitrile hydratase from recombinamt E. coli and mutant ACL racemase and DaaA from E. coli encoding mutant ACL racemase and DaaA genes.  相似文献   

12.
Using racemic tert‐leucine amide as sole nitrogen source in minimal medium, 162 strains were isolated by enrichment techniques and shown to contain amidase activity. Among these isolates three D ‐amidase producers were found and identified as Variovorax paradoxus (two strains) and Klebsiella spec. The D ‐amidase from Variovorax paradoxus was purified to homogeneity by three chromatographic steps. With dl ‐Tle‐amide as substrate Michaelis Menten kinetics were observed with a KM of 0.74 mM, a KI of 640 mM and a Vmax of 1.4 U/mg. The amidase has a broad pH‐optimum between 7 and 9.5 and a temperature optimum at 47–49 °C. The amidase hydrolyzed amino acid amides as well as carboxamides and 2‐hydroxy acid amides. The stereoselectivity of the reaction was variable, however. Hydrolyzing dl ‐Tle‐amide the enantiomeric ratio E was >200 resulting in D ‐Tle with an ee of >99% and up to 47% conversion. Similar results were obtained with dl ‐Leu‐amide and dl ‐Val‐amide while dl ‐Phe‐amide was hydrolyzed with an enantiomeric ratio E of only 5.  相似文献   

13.
Sch47554 and Sch47555 are antifungal compounds from Streptomyces sp. SCC‐2136. The availability of the biosynthetic gene cluster made it possible to track genes that encode biosynthetic enzymes responsible for the structural features of these two angucyclines. Sugar moieties play important roles in the biological activities of many natural products. An investigation into glycosyltransferases (GTs) might potentially help to diversify pharmaceutically significant drugs through combinatorial biosynthesis. Sequence analysis indicates that SchS7 is a putative C‐GT, whereas SchS9 and SchS10 are proposed to be O‐GTs. In this study, the roles of these three GTs in the biosynthesis of Sch47554 and Sch47555 are characterized. Coexpression of the aglycone and sugar biosynthetic genes with schS7 in Streptomyces lividans K4 resulted in the production of C‐glycosylated rabelomycin, which revealed that SchS7 attached a d ‐amicetose moiety to the aglycone core structure at the C‐9 position. Gene inactivation studies revealed that subsequent glycosylation steps took place in a sequential manner, in which SchS9 first attached either an l ‐aculose or l ‐amicetose moiety to 4′‐OH of the C‐glycosylated aglycone, then SchS10 transferred an l ‐aculose moiety to 3‐OH of the angucycline core.  相似文献   

14.
Himeic acid A, which is produced by the marine fungus Aspergillus japonicus MF275, is a specific inhibitor of the ubiquitin‐activating enzyme E1 in the ubiquitin–proteasome system. To elucidate the mechanism of himeic acid biosynthesis, feeding experiments with labeled precursors have been performed. The long fatty acyl side chain attached to the pyrone ring is of polyketide origin, whereas the amide substituent is derived from leucine. These results suggest that a polyketide synthase–nonribosomal peptide synthase (PKS‐NRPS) is involved in himeic acid biosynthesis. A candidate gene cluster was selected from the results of genome sequencing analysis. Disruption of the PKS‐NRPS gene by Agrobacterium‐mediated transformation confirms that HimA PKS‐NRPS is involved in himeic acid biosynthesis. Thus, the him biosynthetic gene cluster for himeic acid in A. japonicus MF275 has been identified.  相似文献   

15.
In Streptomyces albogriseolus the indolethiophen alkaloid thienodolin is derived from tryptophan. The first step in thienodolin biosynthesis is the regioselective chlorination of tryptophan in the 6‐position of the indole ring. The second step is catalyzed by the aminotransferase ThdN. ThdN shows sequence homology (up to 69 % similarity) with known pyridoxal 5′‐phosphate‐dependent aminotransferases of the aspartate aminotransferase family from Gram‐positive bacteria. thdN was heterologously expressed in Pseudomonas fluorescens, and the enzyme was purified by nickel‐affinity chromatography. ThdN is a homodimeric enzyme with a mass of 90 600 kDa and catalyzes the conversion of l ‐tryptophan and a number of chlorinated and brominated l ‐tryptophans. The lowest KM values were found for 6‐bromo‐ and 6‐chlorotryptophan (40 and 66 μm , respectively). For l ‐tryptophan it was 454 μm, which explains why thienodolin is the major product and dechlorothienodolin is only a minor component. The turnover number (kcat) for 7‐chlorotryptophan (128 min?1) was higher than that for the natural substrate 6‐chlorotryptophan (88 min?1).  相似文献   

16.
A novel enzymatic production system of optically pure β‐hydroxy α‐amino acids was developed. Two enzymes were used for the system: an N‐succinyl L ‐amino acid β‐hydroxylase (SadA) belonging to the iron(II)/α‐ketoglutarate‐dependent dioxygenase superfamily and an N‐succinyl L ‐amino acid desuccinylase (LasA). The genes encoding the two enzymes are part of a gene set responsible for the biosynthesis of peptidyl compounds found in the Burkholderia ambifaria AMMD genome. SadA stereoselectively hydroxylated several N‐succinyl aliphatic L ‐amino acids and produced N‐succinyl β‐hydroxy L ‐amino acids, such as N‐succinyl‐L ‐β‐hydroxyvaline, N‐succinyl‐L ‐threonine, (2S,3R)‐N‐succinyl‐L ‐β‐hydroxyisoleucine, and N‐succinyl‐L ‐threo‐β‐hydroxyleucine. LasA catalyzed the desuccinylation of various N‐succinyl‐L ‐amino acids. Surprisingly, LasA is the first amide bond‐forming enzyme belonging to the amidohydrolase superfamily, and has succinylation activity towards the amino group of L ‐leucine. By combining SadA and LasA in a preparative scale production using N‐succinyl‐L ‐leucine as substrate, 2.3 mmol of L ‐threo‐β‐hydroxyleucine were successfully produced with 93% conversion and over 99% of diastereomeric excess. Consequently, the new production system described in this study has advantages in optical purity and reaction efficiency for application in the mass production of several β‐hydroxy α‐amino acids.

  相似文献   


17.
Bacterial cytochrome P450s form a remarkable clade of the P450 superfamily of oxidative hemoproteins, and are often involved in the biosynthesis of complex natural products. Those in a subgroup known as “Oxy enzymes” play a crucial role in the biosynthesis of glycopeptide antibiotics, including vancomycin and teicoplanin. The Oxy enzymes catalyze crosslinking of aromatic residues in the non‐ribosomal antibiotic precursor peptide while it remains bound to the non‐ribosomal peptide synthetase (NRPS); this crosslinking secures the three‐dimensional structure of the glycopeptide, crucial for antibiotic activity. We have characterized OxyBtei, the first of the Oxy enzymes in teicoplanin biosynthesis. Our results reveal that OxyBtei possesses a structure similar to those of other Oxy proteins and is active in crosslinking NRPS‐bound peptide substrates. However, OxyBtei displays a significantly altered activity spectrum against peptide substrates compared to its well‐studied vancomycin homologue.  相似文献   

18.
Unnatural amino acids, particularly synthetic α‐amino acids, are becoming crucial tools for modern drug discovery research. In particular, this application requires enantiomerically pure isomers. In this work we report on the resolution of racemic mixtures of the amino acids d,l ‐naphthylalanine and d,l ‐naphthylglycine by using a natural enzyme, D ‐amino acid oxidase from the yeast Rhodotorula gracilis. A significant improvement of the bioconversion is obtained using a single‐point mutant enzyme designed by a rational approach. With this D ‐amino acid oxidase variant the complete resolution of all the unnatural amino acids tested was obtained: in this case, the bioconversion requires a shorter time and a lower amount of biocatalyst compared to the wild‐type enzyme. The simultaneous production of the corresponding α‐keto acid, a possible precursor of the amino acid in the L ‐form, improves the significance of the procedure.  相似文献   

19.
S‐Adenosylmethionine (SAM)‐dependent enzymes have great potential for selective alkylation processes. In this study we investigated the regiocomplementary O‐methylation of catechols. Enzymatic methylation is often hampered by the need for a stoichiometric supply of SAM and the inhibitory effect of the SAM‐derived byproduct on most methyltransferases. To counteract these issues we set up an enzyme cascade. Firstly, SAM was generated from l ‐methionine and ATP by use of an archaeal methionine adenosyltransferase. Secondly, 4‐O‐methylation of the substrates dopamine and dihydrocaffeic acid was achieved by use of SafC from the saframycin biosynthesis pathway in 40–70 % yield and high selectivity. The regiocomplementary 3‐O‐methylation was catalysed by catechol O‐methyltransferase from rat. Thirdly, the beneficial influence of a nucleosidase on the overall conversion was demonstrated. The results of this study are important milestones on the pathway to catalytic SAM‐dependent alkylation processes.  相似文献   

20.
Pyridomycin is an antimycobacterial cyclodepsipeptide assembled by a nonribosomal peptide synthetase/polyketide synthase hybrid system. Analysis of its cluster revealed a nonribosomal peptide synthetase (NRPS) module, PyrG, that contains two tandem adenylation domains and a PKS‐type ketoreductase domain. In this study, we biochemically validated that the second A domain recognizes and activates α‐keto‐β‐methylvaleric acid (2‐KVC) as the native substrate; the first A domain was not functional but might play a structural role. The KR domain catalyzed the reduction of the 2‐KVC tethered to the peptidyl carrier protein of PyrG in the presence of the MbtH family protein, PyrH. PyrG was demonstrated to recognize many amino acids. This substrate promiscuity provides the potential to generate pyridomycin analogues with various enolic acids moiety; this is important for binding InhA, a critical enzyme for cell‐wall biosynthesis in Mycobacterium tuberculosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号