首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nonribosomal peptide synthetase PF1022‐synthetase (PFSYN) synthesises the cyclooctadepsipeptide PF1022 from the building blocks D ‐lactate, D ‐phenyllactate and N‐methylleucine. The substrate tolerance of PFSYN for hydroxy acids was probed by in vitro screening of a set of aliphatic and aromatic α‐D ‐hydroxy acids with various structural modifications in the side chain. Thus, new PF1022 derivatives for example, propargyl‐D ‐lactyl‐PF1022 and β‐thienyl‐D ‐lactyl‐PF1022 were generated. The promiscuous behaviour of PFSYN towards aliphatic and aromatic α‐D ‐hydroxy acids is considerably larger than that of related enniatin synthetase (ESYN) and thus gives rise to the enzymatic generation of various new PF1022 derivatives.  相似文献   

2.
Through a number of strategies nonribosomal peptide assembly lines give rise to a metabolic diversity not possible by ribosomal synthesis. One distinction within nonribosomal assembly is that products are elaborated on an enzyme‐tethered substrate, and their release is enzyme catalysed. Reductive release by NAD(P)H‐dependent catalysts is one observed nonribosomal termination and release strategy. Here we probed the selectivity of a terminal reductase domain by using a full‐length heterologously expressed nonribosomal peptide synthetase for the dipeptide aureusimine and were able to generate 17 new analogues. Further, we generated an X‐ray structure of aureusimine terminal reductase to gain insight into the structural details associated with this enzymatic domain.  相似文献   

3.
The gene greA was cloned from the genome of the basidiomycete Suillus grevillei. It encodes a monomodular natural product biosynthesis protein composed of three domains for adenylation, thiolation, and thioesterase and, hence, is reminiscent of a nonribosomal peptide synthetase (NRPS). GreA was biochemically characterized in vitro. It was identified as atromentin synthetase and therefore represents one of only a limited number of biochemically characterized NRPS-like enzymes which accept an aromatic α-keto acid. Specificity-conferring amino acid residues-collectively referred to as the nonribosomal code-were predicted for the primary sequence of the GreA adenylation domain and were an unprecedented combination for aromatic α-keto acids. Plausible support for this new code came from in silico simulation of the adenylation domain structure. According to the model, the predicted residues line the active site and, therefore, very likely contribute to substrate specificity.  相似文献   

4.
The biosynthesis of the potent cyanobacterial hepatotoxin microcystin involves isopeptide bond formation through the carboxylic acid side chains of d ‐glutamate and β‐methyl d ‐aspartate. Analysis of the in vitro activation profiles of the two corresponding adenylation domains, McyE‐A and McyB‐A2, either in a didomain or a tridomain context with the cognate thiolation domain and the upstream condensation domain revealed that substrate activation of both domains strictly depended on the presence of the condensation domains. We further identified two key amino acids in the binding pockets of both adenylation domains that could serve as a bioinformatic signature of isopeptide bond‐forming modules incorporating d ‐glutamate or d ‐aspartate. Our findings further contribute to the understanding of the multifaceted role of condensation domains in nonribosomal peptide synthetase assembly lines.  相似文献   

5.
Feglymycin, a peptide antibiotic produced by Streptomyces sp. DSM 11171, consists mostly of nonproteinogenic phenylglycine‐type amino acids. It possesses antibacterial activity against methicillin‐resistant Staphylococcus aureus strains and antiviral activity against HIV. Inhibition of the early steps of bacterial peptidoglycan synthesis indicated a mode of action different from those of other peptide antibiotics. Here we describe the identification and assignment of the feglymycin (feg) biosynthesis gene cluster, which codes for a 13‐module nonribosomal peptide synthetase (NRPS) system. Inactivation of an NRPS gene and supplementation of a hydroxymandelate oxidase mutant with the amino acid l ‐Hpg proved the identity of the feg cluster. Feeding of Hpg‐related unnatural amino acids was not successful. This characterization of the feg cluster is an important step to understanding the biosynthesis of this potent antibacterial peptide.  相似文献   

6.
FSN1, a gene isolated from the sugar‐cane pathogen Fusarium sacchari, encodes a 4707‐residue nonribosomal peptide synthetase consisting of three complete adenylation, thiolation and condensation modules followed by two additional thiolation and condensation domain repeats. This structure is similar to that of ferricrocin synthetase, which makes a siderophore that is involved in intracellular iron storage in other filamentous fungi. Heterologous expression of FSN1 in Aspergillus oryzae resulted in the accumulation of a secreted metabolite that was identified as ferrirhodin. This siderophore was found to be present in both mycelium and culture filtrates of F. sacchari, whereas ferricrocin is found only in the mycelium, thus suggesting that ferricrocin is an intracellular storage siderophore in F. sacchari, whereas ferrirhodin is used for iron acquisition. To our knowledge, this is the first report to characterise a ferrirhodin synthetase gene functionally.  相似文献   

7.
Indolactam alkaloids are activators of protein kinase C (PKC) and are of pharmacological interest for the treatment of pathologies involving PKC dysregulation. The marine cyanobacterial nonribosomal peptide synthetase (NRPS) pathway for lyngbyatoxin biosynthesis, which we previously expressed in E. coli, was studied for its amenability towards the biosynthesis of indolactam variants. Modification of culture conditions for our E. coli heterologous expression host and analysis of pathway products suggested the native lyngbyatoxin pathway NRPS does possess a degree of relaxed specificity. Site-directed mutagenesis of two positions within the adenylation domain (A-domain) substrate-binding pocket was performed, resulting in an alteration of substrate preference between valine, isoleucine, and leucine. We observed relative congruence of in vitro substrate activation by the LtxA NRPS to in vivo product formation. While there was a preference for isoleucine over leucine, the substitution of alternative tailoring domains may unveil the true in vivo effects of the mutations introduced herein.  相似文献   

8.
The antibiotic kirromycin is assembled by a hybrid modular polyketide synthases (PKSs)/nonribosomal peptide synthetases (NRPSs). Five of six PKSs of this complex assembly line do not have acyltransferase (AT) and have to recruit this activity from discrete AT enzymes. Here, we show that KirCI is a discrete AT which is involved in kirromycin production and displays a rarely found three‐domain architecture (AT1‐AT2‐ER). We demonstrate that the second AT domain, KirCI‐AT2, but not KirCI‐AT1, is the malonyl‐CoA‐specific AT which utilizes this precursor for loading the acyl carrier proteins (ACPs) of the trans‐AT PKS in vitro. In the kirromycin biosynthetic pathway, ACP5 is exclusively loaded with ethylmalonate by the enzyme KirCII and is not recognized as a substrate by KirCI. Interestingly, the excised KirCI‐AT2 can also transfer malonate to ACP5 and thus has a relaxed ACP‐specificity compared to the entire KirCI protein. The ability of KirCI‐AT2 to load different ACPs provides opportunities for AT engineering as a potential strategy for polyketide diversification.  相似文献   

9.
The ajudazols are antifungal secondary metabolites produced by a hybrid polyketide synthase (PKS)‐nonribosomal peptide synthetase (NRPS) multienzyme “assembly line” in the myxobacterium Chondromyces crocatus Cm c5. The most striking structural feature of these compounds is an isochromanone ring system; such an aromatic moiety is only known from two other complex polyketides, the electron transport inhibitor stigmatellin and the polyether lasalocid. The cyclization and aromatization reactions in the stigmatellin pathway are presumed to be catalyzed by a cyclase domain located at the end of the PKS, while the origin of the lasalocid benzenoid ring remains obscure. Notably, the ajudazol biosynthetic machinery does not incorporate a terminal cyclase, but instead a variant thioesterase (TE) domain. Here we present detailed phylogenetic and sequence analysis, coupled with experiments both in vitro and in vivo, that suggest that this TE promotes formation of the isochromanone ring, a novel reaction for this type of domain. As the ajudazol TE has homologues in several other secondary‐metabolite pathways, these results are likely to be generalizable.  相似文献   

10.
A gene encoding a putative dimodular nonribosomal peptide synthetase (NRPS) was identified within a gene cluster of Aspergillus fumigatus, a species reported to produce fumitremorgins and other prenylated alkaloids. The gene was deleted and overexpressed in the genome reference strain Af293, and was also expressed in the naïve host Aspergillus nidulans, which lacks the equivalent gene cluster. While neither fumitremorgins nor the dipeptide brevianamide F (cyclo‐L ‐Trp‐L ‐Pro), an early intermediate, were detected in wild‐type and deletion strains of A. fumigatus, brevianamide F accumulated in fungal cultures following increased expression of the NRPS gene in both A. fumigatus and A. nidulans. We conclude that the gene Afu8g00170, named ftmA, encodes the NRPS brevianamide synthetase. Brevianamide F is the precursor of a variety of fungal prenylated alkaloids with biological activity, including fumitremorgins A, B and C and tryprostatin B.  相似文献   

11.
The structurally intriguing bicyclic ketal moiety of tirandamycin is common to several acyl‐tetramic acid antibiotics, and is a key determinant of biological activity. We have identified the tirandamycin biosynthetic gene cluster from the environmental marine isolate Streptomyces sp. 307–9, thus providing the first genetic insight into the biosynthesis of this natural product scaffold. Sequence analysis revealed a hybrid polyketide synthase–nonribosomal peptide synthetase gene cluster with a colinear domain organization, which is entirely consistent with the core structure of the tirandamycins. We also identified genes within the cluster that encode candidate tailoring enzymes for elaboration and modification of the bicyclic ketal system. Disruption of tamI, which encodes a presumed cytochrome P450, led to a mutant strain deficient in production of late stage tirandamycins that instead accumulated tirandamycin C, an intermediate devoid of any post assembly‐line oxidative modifications.  相似文献   

12.
The absolute configuration of the constituent amino acids in microbial nonribosomal peptides is typically determined by Marfey's method after total hydrolysis of the peptide. A challenge to structure elucidation arises when both d and l enantiomeric configurations of an amino acid are present. Determining the actual position of each amino acid enantiomer within the peptide sequence typically requires laborious approaches based on peptide partial hydrolysis or even total synthesis of the possible diastereomers. Herein, an alternative solution is discussed based on the homogeneous backbone chirality that governs all peptides biosynthesized by a common nonribosomal peptide synthetase. The information on configuration provided by Marfey's analysis of co-occurring minor congeners can reveal unequivocally the stereochemical sequence of the whole peptide family.  相似文献   

13.
L ‐α‐Aminoadipic acid reductases catalyze the ATP‐ and NADPH‐dependent reduction of L ‐α‐aminoadipic acid to the corresponding 6‐semialdehyde during fungal L ‐lysine biosynthesis. These reductases resemble peptide synthetases with regard to their multidomain composition but feature a unique domain of elusive function—now referred to as an adenylation activating (ADA) domain—that extends the reductase N‐terminally. Truncated enzymes based on NPS3, the L ‐α‐aminoadipic acid reductase of the basidiomycete Ceriporiopsis subvermispora, lacking the ADA domain either partially or entirely were tested for activity in vitro, together with an ADA‐adenylation didomain and the ADA domainless adenylation domain. We provide evidence that the ADA domain is required for substrate adenylation: that is, the initial step of the catalytic turnover. Our biochemical data are supported by in silico modeling that identified the ADA domain as a partial peptide synthetase condensation domain.  相似文献   

14.
Assembly of bioactive natural compounds through the action of nonribosomal peptide synthetases (NRPSs) relies on the specific interplay of modules and domains along these multiple mega-enzymes. As the C termini of several bacterial NRPSs often harbor epimerization (E) domains that generate D-amino acids, these seem to facilitate the ordered intermolecular enzymatic interaction and the directed transfer of intermediates. To elucidate this bifunctional role, E domains in recombinant bimodular proteins derived from the tyrocidine synthetase B were investigated. By utilizing sequent tryptic proteolysis and HPLC Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), we could directly interrogate and determine the formation of intermediates attached to the TycB(3)-PCP domain of wild-type TycB(2-3) and to the E domain exchange enzyme TycB(2-3)-ATCAT/E(tycA). In addition, the two proteins and a version of TycB(2-3) fused to the communication-mediating (COM) domain of TycA were applied in product formation assays with TycB(1) to corroborate E domain impact on intermodular NRPS interaction. Significant functional differences between the C-terminal aminoacyl- and peptidyl-E domains were observed in terms of in trans interaction and misinitiation. E domains originating from elongation modules (peptidyl-E domains) seem to be optimized for regulation of the progression of peptide bond formation, epimerization, and intermediate transfer to the downstream module, whereas E domains of initiation modules (aminoacyl-E domains) impair upstream condensation and cause misinitiation. The selection of E domains is therefore decisive for successful application in biocombinatorial engineering of nonribosomal peptides.  相似文献   

15.
The fungal cyclodepsipeptides (CDPs) enniatin, beauvericin, bassianolide, and PF1022 consist of alternating N-methylated l -amino and d -hydroxy acids. They are synthesized by non-ribosomal peptide synthetases (NRPS). The amino acid and hydroxy acid substrates are activated by adenylation (A) domains. Although various A domains have been characterized thus giving insights into the mechanism of substrate conversion, little is known about the utilization of hydroxy acids in NRPSs. Therefore, we used homology modelling and molecular docking of the A1 domain of enniatin synthetase (EnSyn) to gain insights into the mechanism of hydroxy acid activation. We introduced point mutations into the active site and used a photometric assay to study the substrate activation. The results suggest that the hydroxy acid is selected by interaction with backbone carbonyls rather than by a specific side chain. These insights enhance the understanding of non-amino acid substrate activation and could contribute to the engineering of depsipeptide synthetases.  相似文献   

16.
Valinomycin was recently reported to be the most potent agent against severe acute respiratory-syndrome coronavirus (SARS-CoV) in infected Vero E6 cells. Aimed at generating analogues by metabolic engineering, the valinomycin biosynthetic gene cluster has been cloned from Streptomyces tsusimaensis ATCC 15141. Targeted disruption of a nonribosomal peptide synthetase (NRPS) gene abolishes valinomycin production, which confirms its predicted nonribosomal-peptide origin. Sequence analysis of the NRPS system reveals four distinctive modules, two of which contain unusual domain organizations that are presumably involved in the generation of biosynthetic precursors D-alpha-hydroxyisovaleric acid and L-lactic acid. The respective adenylation domains in these two modules contain novel substrate-specificity-conferring codes that might specify for a class of hydroxyl acids for the biosynthesis of the depsipeptide natural products.  相似文献   

17.
The adenylation (A) domain in nonribosomal peptide synthetases catalyses a two-step reaction in which an amino acid is activated and then transferred to the neighbouring thiolation (T) domain. In this study, we investigated the role of the conserved A9 core sequence of the A-domain of tyrocidine synthetase 1, by analysis of single amino acid mutations in the A9 region. Mutation of an absolutely conserved proline (P490G) significantly reduced the conformational stability of the protein, as evidenced by increased susceptibility to proteolytic cleavage and denaturation. All mutant A-domains were capable of amino acid activation, but the activity in the overall reaction was reduced. Surprisingly, the S491R mutant (mutation at the first residue following the A9 motif) showed elevated overall activity compared to the wild-type protein. Our results suggest that the A9 core sequence plays a role in the second reaction step, in which it could serve as a "clip" for the proper positioning of residues important for the interaction with the T-domain, and/or stabilisation of the thioester-forming conformation.  相似文献   

18.
Fungal hybrid enzymes consisting of a polyketide synthase (PKS) and a nonribosomal peptide synthetase (NRPS) module are involved in the biosynthesis of a vast array of ecologically and medicinally relevant natural products. Whereas a dozen gene clusters could be assigned to the requisite PKS–NRPS pathways, the programming of the multifunctional enzymes is still enigmatic. Through engineering and heterologously expressing a chimera of PKS (lovastatin synthase, LovB) and NRPS (cytochalasin synthase, CheA) in Aspergillus terreus, we noted the potential incompatibility of a fungal highly reducing PKS (hrPKS) with the NRPS component of fungal PKS–NRPS hybrids. To rationalize the unexpected outcome of the gene fusion experiments, we conducted extensive bioinformatic analyses of fungal PKS–NRPS hybrids and LovB‐type PKS. From motif studies and the function of the engineered chimeras, a noncanonical function of C‐terminal condensation (C) domains in truncated PKS–NRPS homologues was inferred. More importantly, sequence alignments and phylogenetic trees revealed an evolutionary imprint of the PKS–NRPS domains, which reflect the evolutionary history of the entire megasynthase. Furthermore, a detailed investigation of C and adenylation (A) domains provides support for a scenario in which not only the A domain but also the C domain participates in amino acid selection. These findings shed new light on the complex code of this emerging class of multifunctional enzymes and will greatly facilitate future combinatorial biosynthesis and pathway engineering approaches towards natural product analogues.  相似文献   

19.
Structural and activity studies have revealed the dynamic and transient actions of carrier protein (CP) activity in primary and secondary metabolic pathways. CP-mediated interactions play a central role in nonribosomal peptide biosynthesis, as they serve as covalent tethers for amino acid and aryl acid substrates and enable the growth of peptide intermediates. Strategies are therefore required to study protein–protein interactions efficiently. Herein, we describe activity-based probes used to demonstrate the protein–protein interactions between aryl CP (ArCP) and aryl acid adenylation (A) domains as well as the substrate specificities of the aryl acid A domains. If coupled with in-gel fluorescence imaging, this strategy allows visualization of the protein–protein interactions required to recognize and transfer the substrate to the partner ArCP. This technique has potential for the analysis of protein–protein interactions within these biosynthetic enzymes at the molecular level and for use in the combinatorial biosynthesis of new nonribosomal peptides.  相似文献   

20.
Macrocyclization of a peptide or a lipopeptide occurs at the last step of synthesis and is usually catalyzed by a single C-terminal thioesterase (Te) domain. Arthrofactin synthetase (Arf) from Pseudomonas sp. MIS38 represents a novel type of nonribosomal peptide synthetase that contains unique tandem C-terminal Te domains, ArfC_Te1 and ArfC_Te2. In order to analyze their function in vivo, site-directed mutagenesis was introduced at the putative active-site residues in ArfC_Te1 and ArfC_Te2. It was found that both Te domains were functional. Peaks corresponding to arthrofactin and its derivatives were absent in ArfC_Te1:S89A, ArfC_Te1:S89T, and ArfC_Te1:E26G/F27A mutants, and the production of arthrofactin by ArfC_Te2:S92A, ArfC_Te2:S92A/D118A, and ArfCDeltaTe2 was reduced by 95 % without an alteration of the cyclic lipoundecapeptide structure. These results suggest that Ser89 in ArfC_Te1 is essential for the completion of macrocyclization and the release of product. Glu26 and Phe27 residues are also part of the active site of ArfC_Te1. ArfC_Te2 might have been added during the evolution of Arf in order to improve macrocyclization efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号