首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two putative prenyltransferase genes, SAML0654 and Strvi8510, were identified in Streptomyces ambofaciens and Streptomyces violaceusniger, respectively. Their deduced products share 63 % sequence identity. Biochemical investigations with recombinant proteins demonstrated that L ‐tryptophan and derivatives, including D ‐tryptophan, 4‐, 5‐, 6‐ and 7‐methyl‐dl ‐tryptophan, were well accepted by both enzymes in the presence of DMAPP. Structural elucidation of the isolated products revealed regiospecific prenylation at C‐6 of the indole ring and proved unequivocally the identification of two very similar 6‐dimethylallyltryptophan synthases (6‐DMATS). Detailed biochemical investigations with SAML0654 proved L ‐tryptophan to be the best substrate (Km 18 μm, turnover 0.3 s?1). Incubation with different prenyl donors showed that they also accepted GPP and catalyzed the same specific prenylation. Utilizing GPP as a prenyl donor has not been reported for tryptophan prenyltransferases previously. Both enzymes also catalyzed prenylation of some hydroxynaphthalenes; this has not previously been described for bacterial indole prenyltransferases. Interestingly, SAML0654 transferred prenyl moieties onto the unsubstituted ring of hydroxynaphthalenes.  相似文献   

2.
3.
Dietary phenolic compounds possess potent bioactivity against inflammatory pathways of chronic inflammatory conditions, such as type 2 diabetes. Here, the phenolic profile and bioactivity of Italian red wines Gaglioppo, Magliocco, and Nerello Mascalese were characterized. NMR, HPLC/UV-Vis and spectrophotometric characterization showed that Magliocco was the richest wine in monomeric anthocyanins (two-fold), catechins, and low molecular weight phenolics (LMWP). A positive correlation was observed between the polyphenolic content and antioxidant capacity (p < 0.05), with Magliocco displaying the highest antioxidant capacity (p < 0.01). In vitro evidence on the endothelial cell models of insulin resistance and hyperglycemia showed the ability of Magliocco to reduce reactive oxygen species (ROS) (p < 0.01) and cytokine release (p < 0.01) and to upregulate SIRT1 and SIRT6 (p < 0.01). On the whole, the results indicated that the quantitative and qualitative phenolic profiles of red wines influence their in vitro beneficial effects on oxidative and proinflammatory milieu in endothelial cells, showing a positive modulation of SIRT1 and SIRT6, both implied in vascular aging.  相似文献   

4.
The range of secondary metabolites (SMs) produced by the rice pathogen Fusarium fujikuroi is quite broad. Several polyketides, nonribosomal peptides and terpenes have been identified. However, no products of dimethylallyltryptophan synthases (DMATSs) have been elucidated, although two putative DMATS genes are present in the F. fujikuroi genome. In this study, the in vivo product derived from one of the DMATSs (DMATS1, FFUJ_09179) was identified with the help of the software MZmine 2. Detailed structure elucidation showed that this metabolite is a reversely N‐prenylated tryptophan with a rare form of prenylation. Further identified products probably resulted from side reactions of DMATS1. The genes adjacent to DMATS1 were analyzed; this showed no influence on the biosynthesis of the product.  相似文献   

5.
6.
δ‐Cadinene synthase is a sesquiterpene cyclase that utilises the universal achiral precursor farnesyl diphosphate (FDP) to generate predominantly the bicyclic sesquiterpene δ‐cadinene and about 2 % germacradien‐4‐ol, which is also generated from FDP by the cyclase germacradien‐4‐ol synthase. Herein, the mechanism by which sesquiterpene synthases discriminate between deprotonation and reaction with a nucleophilic water molecule was investigated by site‐directed mutagenesis of δ‐cadinene synthase. If W279 in δ‐cadinene synthase was replaced with various smaller amino acids, the ratio of alcohol versus hydrocarbon product was directly proportional to the van der Waals volume of the amino acid side chain. DCS‐W279A is a catalytically highly efficient germacradien‐4‐ol synthase (kcat/KM=1.4×10?3 μm s?1) that produces predominantly germacradien‐4‐ol in addition to 11 % δ‐cadinene. Water capture is not achieved through strategic positioning of a water molecule in the active site, but through a coordinated series of loop movements that allow bulk water access to the final carbocation in the active site prior to product release.  相似文献   

7.
Mutational analysis of the pyridoxal 5′‐phosphate (PLP)‐dependent enzyme PctV was carried out to elucidate the multi‐step reaction mechanism for the formation of 3‐aminobenzoate (3‐ABA) from 3‐dehydroshikimate (3‐DSA). Introduction of mutation K276R led to the accumulation of a quinonoid intermediate with an absorption maximum at 580 nm after the reaction of pyridoxamine 5′‐phosphate (PMP) with 3‐DSA. The chemical structure of this intermediate was supported by X‐ray crystallographic analysis of the complex formed between the K276R mutant and the quinonoid intermediate. These results clearly show that a quinonoid intermediate is involved in the formation of 3‐ABA. They also indicate that Lys276 (in the active site of PctV) plays multiple roles, including acid/base catalysis during the dehydration reaction of the quinonoid intermediate.  相似文献   

8.
The unique five‐membered aminocyclitol core of the antitumor antibiotic pactamycin originates from d ‐glucose, so unprecedented enzymatic modifications of the sugar intermediate are involved in the biosynthesis. However, the order of the modification reactions remains elusive. Herein, we examined the timing of introduction of an amino group into certain sugar‐derived intermediates by using recombinant enzymes that were encoded in the pactamycin biosynthesis gene cluster. We found that the NAD+‐dependent alcohol dehydrogenase PctP and pyridoxal 5′‐phosphate dependent aminotransferase PctC converted N‐acetyl‐d ‐glucosaminyl‐3‐aminoacetophonone into 3′‐amino‐3′‐deoxy‐N‐acetyl‐d ‐glucosaminyl‐3‐aminoacetophenone. Further, N‐acetyl‐d ‐glucosaminyl‐3‐aminophenyl‐β‐oxopropanoic acid ethyl ester was converted into the corresponding 3′‐amino derivative. However, PctP did not oxidize most of the tested d ‐glucose derivatives, including UDP‐GlcNAc. Thus, modification of the GlcNAc moiety in pactamycin biosynthesis appears to occur after the glycosylation of aniline derivatives.  相似文献   

9.
Sirtuin inhibitors have attracted much interest due to the involvement of sirtuins in various biological processes. Several SIRT2‐selective inhibitors have been developed, and some exhibit anticancer activities. To facilitate the choice of inhibitors in future studies and the development of better inhibitors, we directly compared several reported SIRT2‐selective inhibitors: AGK2, SirReal2, Tenovin‐6, and TM. In vitro, TM is the most potent and selective inhibitor, and only TM could inhibit the demyristoylation activity of SIRT2. SirReal2, Tenovin‐6, and TM all showed cytotoxicity in cancer cell lines, with Tenovin‐6 being the most potent, but only TM showed cancer‐cell‐specific toxicity. All four compounds inhibited the anchorage‐independent growth of HCT116 cells, but the effect of TM was most significantly affected by SIRT2 overexpression, suggesting that the anticancer effect of TM depends more on SIRT2 inhibition. These results not only provide useful guidance about choosing the right SIRT2 inhibitor in future studies, but also suggest general practices that should be followed for small‐molecule inhibitor development activities.  相似文献   

10.
Retaining glycosidases are an important class of enzymes involved in glycan degradation. To study better the role of specific enzymes in deglycosylation processes, and thereby the importance of particular glycosylation patterns, a set of potent inhibitors, each specific to a particular glycosidase, would be an invaluable toolkit. Towards this goal, we detail here a more in‐depth study of a prototypical macrocyclic peptide inhibitor of the model retaining glycosidase human pancreatic α‐amylase (HPA). Notably, incorporation of l ‐DOPA into this peptide affords an inhibitor of HPA with potency that is tenfold higher (Ki=480 pm ) than that of the previously found consensus sequence. This represents a first successful step in converting a recently discovered natural‐product‐derived motif, already specific for the catalytic side‐chain arrangement conserved in the active sites of retaining glycosidases, into a tuneable retaining glycosidase inhibition warhead.  相似文献   

11.
Noscapine is a phthalideisoquinoline alkaloid isolated from the opium poppy Papaver somniferum. It has long been used as an antitussive agent, but has more recently been found to possess microtubule‐modulating properties and anticancer activity. Herein we report the synthesis and pharmacological evaluation of a series of 6′‐substituted noscapine derivatives. To underpin this structure–activity study, an efficient synthesis of N‐nornoscapine and its subsequent reduction to the cyclic ether derivative of N‐nornoscapine was developed. Reaction of the latter with a range of alkyl halides, acid chlorides, isocyanates, thioisocyanates, and chloroformate reagents resulted in the formation of the corresponding N‐alkyl, N‐acyl, N‐carbamoyl, N‐thiocarbamoyl, and N‐carbamate derivatives, respectively. The ability of these compounds to inhibit cell proliferation was assessed in cell‐cycle cytotoxicity assays using prostate cancer (PC3), breast cancer (MCF‐7), and colon cancer (Caco‐2) cell lines. Compounds that showed activity in the cell‐cycle assay were further evaluated in cell viability assays using PC3 and MCF‐7 cells.  相似文献   

12.
13.
14.
Aspergillus aculeatus, a filamentous fungus belonging to the Aspergillus clade Nigri, is an industrial workhorse in enzyme production. Recently we reported a number of secondary metabolites from this fungus; however, its genetic potential for the production of secondary metabolites is vast. In this study we identified a 6‐methylsalicylic acid (6‐MSA) synthase from A. aculeatus, and verified its functionality by episomal expression in A. aculeatus and heterologous expression in A. nidulans. Feeding studies with fully 13C‐labeled 6‐MSA revealed that 6‐MSA is incorporated into aculinic acid, which further incorporates into three compounds that we name aculins A and B, and epi‐aculin A, described here for the first time. Based on NMR data and bioinformatic studies we propose the structures of the compounds as well as a biosynthetic pathway leading to formation of aculins from 6‐MSA.  相似文献   

15.
Cellulose–graphene oxide (GO) aerogel composites were successfully prepared from cellulose and GO dispersed in N‐methyl morpholine‐N‐oxide monohydrate, a nontoxic and environmentally friendly solvent, after a freeze‐drying process. Because of the strong interactions between the numerous oxygen‐containing groups located on the surface of GO and the functional groups of the cellulose molecules, the GO monolayers were well dispersed in the three‐dimensional porous structure of the cellulose aerogels. With the addition of 10 wt % GO, the swelling ratios and water contents of the composite cellulose–GO aerogels increased from 468 to 706% and from 82.4% to 87.6%, respectively. The corresponding maximum decomposition temperatures also increased from 335 to 353 °C with increasing GO content from 0 to 10%; this indicated that the thermal stability of the cellulose–GO aerogels was enhanced. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46152.  相似文献   

16.
Protein arginine N‐methyltransferases (PRMTs) catalyze methyl‐group transfer from S‐adenosyl‐L ‐methionine onto arginine residues in proteins. In this study, modifications were introduced at the guanidine moiety of a peptidyl arginine residue to investigate how changes to the PRMT substrate can modulate enzyme activity. We found that peptides bearing Nη‐hydroxy or Nη‐amino substituted arginine showed higher apparent kcat values than for the monomethylated substrate when using PRMT1, whereas this catalytic preference was not observed for PRMT4 and PRMT6. Methylation by compromised PRMT1 variants E153Q and D51N further supports the finding that the N‐hydroxy substitution facilitates methyl transfer by tuning the reactivity of the guanidine moiety. In contrast, Nη‐nitro and Nη‐canavanine substituted substrates inhibit PRMT activity. These findings demonstrate that methylation of these PRMT substrates is dependent on the nature of the modification at the guanidine moiety.  相似文献   

17.
18.
Mitochondria-targeted compounds are needed to act on a variety of processes that take place in these subcellular organelles and that have great pathophysiological relevance. In particular, redox-active molecules that are capable of homing in on mitochondria provide a tool to intervene on a major cellular source of reactive oxygen species and on the processes they induce, notably the mitochondrial permeability transition and cell death. We have linked the 3-OH of quercetin (3,3',4',5,7-pentahydroxy flavone), a model polyphenol, and the triphenylphosphonium moiety, a membrane-permeant cationic group, to produce proof-of-principle mitochondriotropic quercetin derivatives. The remaining hydroxyls were sometimes acetylated to hinder metabolism and improve solubility. The new compounds accumulate in mitochondria in a transmembrane potential-driven process and are only slowly metabolised by cultured human colon cells. They inhibit mitochondrial ATPase activity much as quercetin does, and are toxic for fast-growing cells.  相似文献   

19.
An exhaustive overview of the field of cyclohexa‐3,5‐diene‐1,2‐trans‐diols is given. Early and recent methods for the formation of the compounds are reviewed and the various syntheses in which the title compounds have been applied are presented. Special emphasis is given to naturally occurring epoxides, which have been the dominant target molecules since the 1970s. Finally, recent advances in biotechnology are highlighted; with the increased availability of the enantiomerically pure cyclohexa‐3,5‐diene‐1,2‐trans‐diols, new synthetic endeavours were initiated.  相似文献   

20.
To demonstrate the structural specificity of the glycosyl donor for the transglycosylation reaction by using endo‐β‐N‐acetylglucosaminidase from Mucor hiemalis (endo‐M), a series of tetrasaccharide oxazoline derivatives was synthesized. These derivatives correspond to the core structure of an asparagine‐linked glycoprotein glycan with a β‐mannose unit of a non‐natural‐type monosaccharide, including β‐glucose, β‐galactose, and β‐talose in place of the β‐mannose moiety. The transglycosylation activity of wildtype (WT) endo‐M and two mutants, N175Q and N175A, was examined by using these tetrasaccharide donors with p‐nitrophenyl N‐acetylglucosaminide (GlcNAc‐pNp). The essential configuration of the hydroxy group for the transglycosylation reaction was determined. On the basis of these results, the transglycosylation reaction was investigated by using chemically modified donors, and transglycosylated products were successfully obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号