首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 566 毫秒
1.
Aromatic l ‐amino acid decarboxylases (AADCs) catalyze the release of CO2 from proteinogenic and non‐proteinogenic l ‐amino acid substrates and are involved in pathways that biosynthesize neurotransmitters or bioactive natural products. In contrast to AADCs from animals and plants, fungal AADCs have received very little attention. Here, we report on the in vitro characterization of heterologously produced Ceriporiopsis subvermispora AADC, now referred to as CsTDC, which is the first characterized basidiomycete AADC. This study identified the enzyme as a decarboxylase that is strictly specific for l ‐tryptophan and 5‐hydroxy‐l ‐tryptophan. The tdc gene was subjected to saturation mutagenesis so as to vary the key active site residue, Gly351. Aliphatic amino acid residues, l ‐serine, or l ‐threonine at position 351 added l ‐tyrosine and 3,4‐dihydroxy‐l ‐phenylalanine (l ‐DOPA) decarboxylase activity while retaining stereospecificity and l ‐tryptophan decarboxylase activity.  相似文献   

2.
β‐Methyltryptophans (β‐mTrp) are precursors in the biosynthesis of bioactive natural products and are used in the synthesis of peptidomimetic‐based therapeutics. Currently β‐mTrp is produced by inefficient multistep synthetic methods. Here we demonstrate how an engineered variant of tryptophan synthase from Salmonella (StTrpS) can catalyse the efficient condensation of l ‐threonine and various indoles to generate β‐mTrp and derivatives in a single step. Although l ‐serine is the natural substrate for TrpS, targeted mutagenesis of the StTrpS active site provided a variant (βL166V) that can better accommodate l ‐Thr as a substrate. The condensation of l ‐Thr and indole proceeds with retention of configuration at both α‐ and β‐positions to give (2S,3S)‐β‐mTrp. The integration of StTrpS (βL166V) with l ‐amino acid oxidase, halogenase enzymes and palladium chemocatalysts provides access to further d ‐configured and regioselectively halogenated or arylated β‐mTrp derivatives.  相似文献   

3.
Proline hydroxylases are iron(II)/2‐oxoglutarate‐dependent enzymes that hydroxylate l ‐proline and derivatives, such as l pipecolic acid, which is the six‐membered‐ring homologue of l ‐proline. It has been established that there is a distinct group of conserved bacterial enzymes that hydroxylate l ‐pipecolic acid and trans‐3‐ and trans‐4‐methyl‐l ‐proline, but virtually no l ‐proline. This allows the organism to produce hydroxyproline congeners without hydroxylation of the physiologically omnipresent l ‐proline. In vitro conversions showed that the substrate spectrum of the pipecolic acid hydroxylases GetF (from a Streptomyces sp.; producer of the tetrapeptide antibiotic GE81112) and PiFa (from Frankia alni) overlaps that of proline hydroxylases, except for the nonacceptance of l ‐proline and smaller homologues. Distinct and conserved residues were determined for both types of enzymes. However, site‐directed mutagenesis in GetF did not yield variants that accepted l ‐proline; this suggested a complex interaction of several residues around the active site, which resulted in delicate changes in substrate specificity. This is supported by substrate docking in a homology model of GetF, which revealed an altered orientation for l ‐proline relative to that of preferred substrates.  相似文献   

4.
To improve the interfacial bonding between halloysite nanotubes (HNTs) and poly(l ‐lactide) (PLLA), a simple surface modification of HNTs with l ‐lactic acid via direct condensation polymerization has been developed. Two modified HNTs were obtained: HNTs grafting with l ‐lactic acid (l‐HNTs) and HNTs grafting with poly(l ‐lactide) (p‐HNTs). The structures and properties of l‐HNTs and p‐HNTs were investigated. Then, a series of HNTs/PLLA, l‐HNTs/PLLA and p‐HNTs/PLLA composites were prepared using a solution casting method and were characterized by polarized optical microscopy (POM), field scanning electron microscopy, and tensile testing. Results showed that l ‐lactic acid and PLLA could be easily grafted onto the surface of HNTs by forming an Al carboxylate bond and following with condensation polymerization, and the amounts of the l ‐lactic acid and PLLA grafted on the surface of the HNTs were 5.08 and 14.47%, respectively. The surface‐grafted l ‐lactic acid and PLLA played the important role in improving the interfacial bonding between the nanotubes and matrix. The l‐HNTs and p‐HNTs can disperse more uniformly in and show better compatibility with the PLLA matrix than untreated HNTs. As a result, the l‐HNTs/PLLA and p‐HNTs/PLLA composites had better tensile properties than that of the HNTs/PLLA composites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41451.  相似文献   

5.
In this investigation, a group of poly(l ‐malic acid acetate‐co‐l ‐lysine ester)s (PMALs) with excellent thermo‐sensitivity and non‐cytotoxicity were prepared by an optimized synthetic route from natural l ‐malic acid and l ‐lysine. The structure and properties of PMALs including monomers were systematically characterized by FTIR, 1H NMR, UV, gel permeation chromatograph, scanning electron microscope, contact angle measurement, cell counting kit assess (CCK‐8), and confocal laser scanning microscopy (CLSM). Three PMALs show a reversible lower critical solution temperature of 8–36 °C depending on their chemical structure. The contact angle measurement revealed a considerable discrepancy in the hydrophilicity/hydrophobicity of PMALs and further influence on their thermo‐sensitivity. The viability of HeLa cells exposed to 0.2–100 μg/mL PMALs solution was found to be in a range 80–103% after 24, 48, and 72 h of incubation, indicating no cytotoxicity. Moreover, a spherical nanocarrier with core‐shell structure was facilely fabricated via the thermo‐sensitivity of PMALs and hydrophobicity of drug. CLSM observations manifested that the hydrophobic‐curcumin‐enwrapped nanocarriers can clearly internalize into the cellular inside. The sustained release of curcumin from nanocarriers in vitro provided a possibility of depressing fast hydrolytic degradation at physiological pH or other side‐effects. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45984.  相似文献   

6.
The 2‐O‐α‐d ‐glucoside of l ‐ascorbic acid (AA‐2G) is a highly stabilized form of vitamin C, with important industrial applications in cosmetics, food, and pharmaceuticals. AA‐2G is currently produced through biocatalytic glucosylation of l ‐ascorbic acid from starch‐derived oligosaccharides. Sucrose would be an ideal substrate for AA‐2G synthesis, but it lacks a suitable transglycosidase. We show here that in a narrow pH window (pH 4.8–6.0, with sharp optimum at pH 5.2), sucrose phosphorylases catalyzed the 2‐O‐α‐glucosylation of l ‐ascorbic acid from sucrose with high efficiency and perfect site‐selectivity. Optimized synthesis with the enzyme from Bifidobacterium longum at 40 °C gave a concentrated product (155 g L?1; 460 mm ), from which pure AA‐2G was readily recovered in ~50 % overall yield, thus providing the basis for advanced production. The peculiar pH dependence is suggested to arise from a “reverse‐protonation” mechanism in which the catalytic base Glu232 on the glucosyl–enzyme intermediate must be protonated for attack on the anomeric carbon from the 2‐hydroxyl of the ionized l ‐ascorbate substrate.  相似文献   

7.
Random copolyester namely, poly(ethylene terephthalate‐co‐sebacate) (PETS), with relatively lower molecular weight was first synthesized, and then it was used as a macromonomer to initiate ring‐opening polymerization of l ‐lactide. 1H NMR quantified composition and structure of triblock copolyesters [poly(l ‐lactic acid)‐b‐poly(ethylene terephthalate‐co‐sebacate)‐b‐poly(l ‐lactic acid)] (PLLA‐PETS‐PLLA). Molecular weights of copolyesters were also estimated from NMR spectra, and confirmed by GPC. Copolyesters exhibited different solubilities according to the actual content of PLLA units in the main chain. Copolymerization effected melting behaviors significantly because of the incorporation of PETS and PLLA blocks. Crystalline morphology showed a special pattern for specimen with certain composition. It was obvious that copolyesters with more content of aromatic units of PET exhibited increased values in both of stress and modulus in tensile test. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

8.
Due to their diverse regio‐ and stereoselectivities, proline hydroxylases provide a straightforward access to hydroxprolines and other hydroxylated cylic amino acids, valuable chiral building blocks for chemical synthesis, which are often not available at reasonable expense by classical chemical synthesis. As yet, the application of proline hydroxylases is limited to a sophisticated industrial process for the production of two hydroxyproline isomers. This is mainly due to difficulties in their heterologues expression, their limited in vitro stability and complex product purification procedures. Here we describe a facile method for the production of cis‐3‐, cis‐4‐ and trans‐4‐proline hydroxylase, and their application for the regio‐ and stereoselective hydroxylation of L ‐proline and its six‐membered ring homologue l‐ pipecolic acid. Since in vitro catalysis with these enzymes is not very efficient and conversions are restricted to the milligram scale, an in vivo procedure was established, which allowed a quantitative conversion of 6 mM l‐ proline in shake flask cultures. After facile product purification via ion exchange chromatography, hydroxyprolines were isolated in yields of 35–61% (175–305 mg per flask). L ‐Pipecolic acid was converted with the isolated enzymes to prove the selectivities of the reactions. In transformations with optimized iron(II) concentration, conversions of 17–68% to hydroxylated products were achieved. The regio‐ and stereochemistry of the products was determined by NMR techniques. To demonstrate the applicability of the preparative in vivo approach for non‐physiological substrates, L ‐pipecolic acid was converted with an E. coli strain producing trans‐4‐proline hydroxylase to trans‐5‐hydroxy‐L ‐pipecolic acid in 61% yield. Thus, a synthetically valuable group of biocatalysts was made readily accessible for application in the laboratory without a need for special equipment or considerable development effort.  相似文献   

9.
In this study, the thermal hydrolysis of the poly(l ‐lactic acid) (PLLA) films was investigated for its potential use as a food‐packaging ecomaterial. The surface morphology, mass loss, molecular weight, thermal properties, and medium pH were routinely investigated; meanwhile, in particular, the composition and cytotoxicity of the water‐soluble degradation products were studied. The changes in the mass loss and molecular weight revealed a random chain‐scission mechanism. Differential scanning calorimetry analysis implied that the hydrolysis preferentially took place in the amorphous region. The medium pH decreased with time because of the accumulation of acid water‐soluble products in the medium. Liquid chromatography/mass spectrometry analysis proved that these products were composed of 1–13 lactic acid units, in which the content of l ‐lactic acid increased with time and reached 9.71 mmol/L after hydrolysis for 84 days. The in vitro cell culture indicated that the water‐soluble degradation products from the PLLA films had no cytotoxicity to human umbilical vein endothelial cells. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42064.  相似文献   

10.
A two‐step direct melt copolymerization process of l ‐lactic acid (L ‐LA)/glycolic acid (GA) was developed: poly(l ‐lactic acid) (PLLA) and poly(glycolic acid) (PGA) with different molecular weight was first synthesized respectively by binary catalyst (tin chloride/p‐toluenesulfonic or tin chloride); and then poly(l ‐lactic‐co‐glycolic acid) (b‐PLGA) was produced by melt polymerization of the as‐prepared PLLA and PGA, wherein the composition and chain structure of b‐PLGA copolymers could be controlled by the molecular weight of PLLA. The chain structure and thermal properties of copolymers were studied by Wide‐angle X‐ray diffraction, nuclear magnetic resonance, differential scanning calorimetry, and thermogravimetric analysis. In comparison with the random PLGA (r‐PLGA) synthesized by one‐step direct melt polymerization, the average l ‐lactic blocks length (LLA) in b‐PLGA was longer while the average glycolic blocks length (LGA) in b‐PLGA was shorter which further resulted in the improved crystallinity and thermostability. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41566.  相似文献   

11.
A one‐pot, two‐step biocatalytic platform for the regiospecfic C‐methylation and C‐ethylation of aromatic substrates is described. The tandem process utilises SalL (Salinospora tropica) for in situ synthesis of S‐adenosyl‐l ‐methionine (SAM), followed by alkylation of aromatic substrates by the C‐methyltransferase NovO (Streptomyces spheroides). The application of this methodology is demonstrated for the regiospecific labelling of aromatic substrates by the transfer of methyl, ethyl and isotopically labelled 13CH3, 13CD3 and CD3 groups from their corresponding SAM analogues formed in situ.  相似文献   

12.
Non‐cationic and amphipathic indoloazepinone‐constrained (Aia) oligomers have been synthesized as new vectors for intracellular delivery. The conformational preferences of the [l ‐Aia‐Xxx]n oligomers were investigated by circular dichroism (CD) and NMR spectroscopy. Whereas Boc‐[l ‐Aia‐Gly]2,4‐OBn oligomers 12 and 13 and Boc‐[l ‐Aia‐β3h‐l ‐Ala]2,4‐OBn oligomers 16 and 17 were totally or partially disordered, Boc‐[l ‐Aia‐l ‐Ala]2‐OBn ( 14 ) induced a typical turn stabilized by C5‐ and C7‐membered H‐bond pseudo‐cycles and aromatic interactions. Boc‐[l ‐Aia‐l ‐Ala]4‐OBn ( 15 ) exhibited a unique structure with remarkable T‐shaped π‐stacking interactions involving the indole rings of the four l ‐Aia residues forming a dense hydrophobic cluster. All of the proposed FITC‐6‐Ahx‐[l ‐Aia‐Xxx]4‐NH2 oligomers 19 – 23 , with the exception of FITC‐6‐Ahx‐[l ‐Aia‐Gly]4‐NH2 ( 18 ), were internalized by MDA‐MB‐231 cells with higher efficiency than the positive references penetratin and Arg8. In parallel, the compounds of this series were successfully explored in an in vitro blood–brain barrier (BBB) permeation assay. Although no passive diffusion permeability was observed for any of the tested Ac‐[l ‐Aia‐Xxx]4‐NH2 oligomers in the PAMPA model, Ac‐[l ‐Aia‐l ‐Arg]4‐NH2 ( 26 ) showed significant permeation in the in vitro cell‐based human model of the BBB, suggesting an active mechanism of cell penetration.  相似文献   

13.
Although bacterial iterative type I polyketide synthases are now known to participate in the biosynthesis of a small set of diverse natural products, the subsequent downstream modification of the resulting polyketide products is poorly understood. We report the functional characterization of the putative orsellinic acid C2‐O‐methyltransferase, which is involved in calicheamicin biosynthesis. This study suggests that C2‐O‐methylation precedes C3‐hydroxylation/methylation and C5‐iodination and requires a coenzyme A‐ or acyl carrier protein‐bound substrate.  相似文献   

14.
MS‐271, produced by Streptomyces sp. M‐271, is a lasso peptide natural product comprising 21 amino acid residues with a d ‐tryptophan at its C terminus. Because lasso peptides are ribosomal peptides, the biosynthesis of MS‐271, especially the mechanism of d ‐Trp introduction, is of great interest. The MS‐271 biosynthetic gene cluster was identified by draft genome sequencing of the MS‐271 producer, and it was revealed that the precursor peptide contains all 21 amino acid residues including the C‐terminal tryptophan. This suggested that the d ‐Trp residue is introduced by epimerization. Genes for modification enzymes such as a macrolactam synthetase (mslC), precursor peptide recognition element (mslB1), cysteine protease (mslB2), disulfide oxidoreductases (mslE, mslF), and a protein of unknown function (mslH) were found in the flanking region of the precursor peptide gene. Although obvious epimerase genes were absent in the cluster, heterologous expression of the putative MS‐271 cluster in Streptomyces lividans showed that it contains all the necessary genes for MS‐271 production including a gene for a new peptide epimerase. Furthermore, a gene‐deletion experiment indicated that MslB1, ‐B2, ‐C and ‐H were indispensable for MS‐271 production and that some interactions of the biosynthetic enzymes were essential for the biosynthesis of MS‐271.  相似文献   

15.
We describe a facile and eco‐friendly solution approach to chemically reduce graphene oxide (GO) to high‐quality graphene using nontoxic inexpensive reductants. The reduction process and mechanism of a group of eco‐friendly reductants were systematically studied. These reductants perform quite differently in terms of reduction rate (l ‐ascorbic acid [l ‐AA] > d ‐fructose > sucrose > glucose > sodium sulfite), density of small sp2 domains (l ‐AA > sodium sulfite > glucose > sucrose > d ‐fructose), degree of reduction (l ‐AA > glucose > d ‐fructose > sodium sulfite > sucrose), and stability of the reduced GO suspension (l ‐AA > d ‐fructose > sucrose > glucose > sodium sulfite). l ‐AA shows the highest reducing ability, achieving the largest extent of reduction after 10 min in the presence of ammonia. Both residual oxygen functionalities and the adsorbed oxidization products of l ‐AA on the graphene surface are responsible for stabilizing the reduced GO suspension over several months. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2757–2764, 2014  相似文献   

16.
An efficient multi‐enzyme cascade reaction for the synthesis of (R)‐ or (S)‐2‐hydroxybutyric acid [(R)‐ or (S)‐2‐HB] from l ‐threonine was developed by using recombinant Escherichia coli cells expressing separately or co‐expressing l ‐threonine deaminase from Escherichia coli K‐12 (ilvA), formate dehydrogenase (FDH) from Candida boidinii and l ‐lactate dehydrogenase (l ‐LDH) from Oryctolagus cuniculus or d ‐lactate dehydrogenase (d ‐LDH) from Staphylococcus epidermidis ATCC 12228. Up to 750 mM of l ‐threonine were completely transformed to (R)‐ or (S)‐2‐HB in optically pure form (>99% ee) with high isolated yields. This one‐pot multi‐enzyme transformation provides a new practical method for the synthesis of these important optically pure compounds.

  相似文献   


17.
To enhance the affinity of 4‐vinyl pyridine to l ‐phenylalanine (l ‐Phe) and convert the imprinting process from the aqueous phase to the organic phase, an oil‐soluble amino acid ionic liquid was introduced as a template. In this study, 1‐butyl‐3‐methylimidazolium α‐aminohydrocinnamic acid salt was first applied to prepared surface molecularly imprinted polymers (MIPs) in acetonitrile for the selective recognition of l ‐Phe. Fluorescence quenching analysis of the functional monomer on the template was investigated under different conditions to study the imprinting mechanism. Several binding studies, such as the sorption kinetics, sorption thermodynamics, and solid‐phase extraction application, and the chiral resolution of racemic phenylalanine were investigated. The binding isotherms were fitted by nonlinear regression to the Freundlich model to investigate the recognition mechanism. The affinity distribution analysis revealed that polymers imprinted by ionic liquid showed higher homogeneous binding sites than those imprinted by l ‐Phe. The competition tests were conducted by a molecularly imprinting solid‐phase extraction procedure to estimate the selective separation properties of the MIPs for l ‐Phe. The target MIP was shown to be successfully for the separation of l ‐Phe from an amino acid mixture. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42485.  相似文献   

18.
Unnatural amino acids, particularly synthetic α‐amino acids, are becoming crucial tools for modern drug discovery research. In particular, this application requires enantiomerically pure isomers. In this work we report on the resolution of racemic mixtures of the amino acids d,l ‐naphthylalanine and d,l ‐naphthylglycine by using a natural enzyme, D ‐amino acid oxidase from the yeast Rhodotorula gracilis. A significant improvement of the bioconversion is obtained using a single‐point mutant enzyme designed by a rational approach. With this D ‐amino acid oxidase variant the complete resolution of all the unnatural amino acids tested was obtained: in this case, the bioconversion requires a shorter time and a lower amount of biocatalyst compared to the wild‐type enzyme. The simultaneous production of the corresponding α‐keto acid, a possible precursor of the amino acid in the L ‐form, improves the significance of the procedure.  相似文献   

19.
Capuramycins are one of several known classes of natural products that contain an l ‐Lys‐derived l ‐α‐amino‐?‐caprolactam (l ‐ACL) unit. The α‐amino group of l ‐ACL in a capuramycin is linked to an unsaturated hexuronic acid component through an amide bond that was previously shown to originate by an ATP‐independent enzymatic route. With the aid of a combined in vivo and in vitro approach, a predicted tridomain nonribosomal peptide synthetase CapU is functionally characterized here as the ATP‐dependent amide‐bond‐forming catalyst responsible for the biosynthesis of the remaining amide bond present in l ‐ACL. The results are consistent with the adenylation domain of CapU as the essential catalytic component for l ‐Lys activation and thioesterification of the adjacent thiolation domain. However, in contrast to expectations, lactamization does not require any additional domains or proteins and is likely a nonenzymatic event. The results set the stage for examining whether a similar NRPS‐mediated mechanism is employed in the biosynthesis of other l ‐ACL‐containing natural products and, just as intriguingly, how spontaneous lactamization is avoided in the numerous NRPS‐derived peptides that contain an unmodified l ‐Lys residue.  相似文献   

20.
We report a β‐hairpin dual stabilizing strategy: a d ‐proline‐l ‐proline (d ‐Pro‐l ‐Pro) dipeptide as the nucleating turn, and a thioether tether as a side‐chain linkage at a precisely designed position to stabilize the β‐hairpin. This method was used to modify the C‐terminal β‐hairpin moiety of the plant defensin, pv‐defensin, in order to obtain a stabilized peptide with enhanced anti‐Candida albicans activity (MIC 84–3.0 μm ), high serum stability (50 % remaining after 48 h) and low hemolysis (<10 % at 152 μm ). This modified peptide penetrated the C. albicans cell membrane within 5 min and showed high activity against clinically isolated antibiotic‐resistant C. albicans and Candida glabrata strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号