首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
IscU and IscS are two essential proteins in the machine responsible for the biogenesis of iron–sulfur clusters, prosthetic groups that are involved in several essential functions. The scaffold protein IscU is the temporary acceptor of the cluster that results when the protein forms a 110 kDa complex with the desulfurase IscS. In the absence of zinc, which stabilises the folded state, IscU is present in solution in equilibrium between a structured and an unstructured form. It has been suggested that IscS preferentially binds unstructured IscU, although crystal structures indicate otherwise. To learn more about the IscS–IscU complex, we have used advanced solution NMR techniques to observe directly the state of fold of IscS‐bound IscU. We present unambiguous evidence that IscU is folded in the complex and that the unstructured form does not bind to IscS. Our data correlate with several observations and explain an IscU‐related pathology.  相似文献   

4.
Motility is a vital feature of the complex life cycle of Plasmodium falciparum, the apicomplexan parasite that causes human malaria. Processes such as host cell invasion are thought to be powered by a conserved actomyosin motor (containing myosin A or myoA), correct localization of which is dependent on a tight interaction with myosin A tail domain interacting protein (MTIP) at the inner membrane of the parasite. Although disruption of this protein–protein interaction represents an attractive means to investigate the putative roles of myoA‐based motility and to inhibit the parasitic life cycle, no small molecules have been identified that bind to MTIP. Furthermore, it has not been possible to obtain a crystal structure of the free protein, which is highly dynamic and unstable in the absence of its natural myoA tail partner. Herein we report the de novo identification of the first molecules that bind to and stabilize MTIP via a fragment‐based, integrated biophysical approach and structural investigations to examine the binding modes of hit compounds. The challenges of targeting such a dynamic system with traditional fragment screening workflows are addressed throughout.  相似文献   

5.
PSD‐95 is a scaffolding protein of the MAGUK protein family, and engages in several vital protein–protein interactions in the brain with its PDZ domains. It has been suggested that PSD‐95 is composed of two supramodules, one of which is the PDZ1‐2 tandem domain. Here we have developed rigidified high‐affinity dimeric ligands that target the PDZ1‐2 supramodule, and established the biophysical parameters of the dynamic PDZ1‐2/ligand interactions. By employing ITC, protein NMR, and stopped‐flow kinetics this study provides a detailed insight into the overall conformational energetics of the interaction between dimeric ligands and tandem PDZ domains. Our findings expand our understanding of the dynamics of PSD‐95 with potential relevance to its biological role in interacting with multivalent receptor complexes and development of novel drugs.  相似文献   

6.
7.
Oxygen‐to‐sulfur substitutions in DNA phosphate often enhance affinity for DNA‐binding proteins. Our previous studies have suggested that this effect of sulfur substitution of both OP1 and OP2 atoms is due to an entropic gain associated with enhanced ion pair dynamics. In this work, we studied stereospecific effects of single sulfur substitution of either the OP1 or OP2 atom in DNA phosphate at the Lys57 interaction site of the Antennapedia homeodomain–DNA complex. Using crystallography, we obtained structural information on the RP and SP diastereomers of the phosphoromonothioate and their interaction with Lys57. Using fluorescence‐based assays, we found significant affinity enhancement upon sulfur substitution of the OP2 atom. Using NMR spectroscopy, we found significant mobilization of the Lys57 side‐chain NH3+ group upon sulfur substitution of the OP2 atom. These data provide further mechanistic insights into the affinity enhancement by oxygen‐to‐sulfur substitution in DNA phosphate.  相似文献   

8.
9.
Transmembrane helices of integral membrane proteins often are flanked by interfacial aromatic residues that can serve as anchors to aid the stabilization of a tilted transmembrane orientation. Yet, physical factors that govern the orientation or dynamic averaging of individual transmembrane helices are not well understood and have not been adequately explained. Using solid‐state 2H NMR spectroscopy to examine lipid bilayer‐incorporated model peptides of the GWALP23 (acetyl‐GGALW(LA)6LWLAGA‐amide) family, we observed substantial unwinding at the terminals of several tilted helices spanning the membranes of DLPC, DMPC, or DOPC lipid bilayers. The fraying of helix ends might be vital for defining the dynamics and orientations of transmembrane helices in lipid bilayer membranes.  相似文献   

10.
S100B contributes to cell proliferation by binding the C terminus of p53 and inhibiting its tumor suppressor function. The use of multiple computational approaches to screen fragment libraries targeting the human S100B–p53 interaction site is reported. This in silico screening led to the identification of 280 novel prospective ligands. NMR spectroscopic experiments revealed specific binding at the p53 interaction site for a set of these compounds and confirmed their potential for further rational optimization. The X‐ray crystal structure determined for one of the binders revealed key intermolecular interactions, thus paving the way for structure‐based ligand optimization.  相似文献   

11.
In a previous study we reported a class of compounds with a 2H‐thiazolo[3,2‐a]pyrimidine core structure as general inhibitors of anti‐apoptotic Bcl‐2 family proteins. However, the absolute stereochemical configuration of one carbon atom on the core structure remained unsolved, and its potential impact on the binding affinities of compounds in this class was unknown. In this study, we obtained pure R and S enantiomers of four selected compounds by HPLC separation and chiral synthesis. The absolute configurations of these enantiomers were determined by comparing their circular dichroism spectra to that of an appropriate reference compound. In addition, a crystal structure of one selected compound revealed the exocyclic double bond in these compounds to be in the Z configuration. The binding affinities of all four pairs of enantiomers to Bcl‐xL, Bcl‐2, and Mcl‐1 proteins were measured in a fluorescence‐polarization‐based binding assay, yielding inhibition constants (Ki values) ranging from 0.24 to 2.20 μM . Interestingly, our results indicate that most R and S enantiomers exhibit similar binding affinities for the three tested proteins. A binding mode for this compound class was derived by molecular docking and molecular dynamics simulations to provide a reasonable interpretation of this observation.  相似文献   

12.
13.
14.
15.
The development of small molecules that inhibit protein–protein interactions continues to be a challenge in chemical biology and drug discovery. Herein we report the development of indole‐based fragments that bind in a shallow surface pocket of a humanised surrogate of RAD51. RAD51 is an ATP‐dependent recombinase that plays a key role in the repair of double‐strand DNA breaks. It both self‐associates, forming filament structures with DNA, and interacts with the BRCA2 protein through a common “FxxA” tetrapeptide motif. We elaborated previously identified fragment hits that target the FxxA motif site and developed small‐molecule inhibitors that are approximately 500‐fold more potent than the initial fragments. The lead compounds were shown to compete with the BRCA2‐derived Ac‐FHTA‐NH2 peptide and the self‐association peptide of RAD51, but they had no effect on ATP binding. This study is the first reported elaboration of small‐molecular‐weight fragments against this challenging target.  相似文献   

16.
4EGI‐1, the prototypic inhibitor of eIF4E/eIF4G interaction, was identified in a high‐throughput screening of small‐molecule libraries with the aid of a fluorescence polarization assay that measures inhibition of binding of an eIF4G‐derived peptide to recombinant eIF4E. As such, the molecular probe 4EGI‐1 has potential for the study of molecular mechanisms involved in human disorders characterized by loss of physiological restraints on translation initiation. A hit‐to‐lead optimization campaign was carried out to overcome the configurational instability in 4EGI‐1, which stems from the E‐to‐Z isomerization of the hydrazone function. We identified compound 1 a , in which the labile hydrazone was incorporated into a rigid indazole scaffold, as a promising rigidified 4EGI‐1 mimetic lead. In a structure–activity relationship study directed towards probing the structural latitude of this new chemotype as an inhibitor of eIF4E/eIF4G interaction and translation initiation we identified 1 d , an indazole‐based 4EGI‐1 mimetic, as a new and improved lead inhibitor of eIF4E/eIF4G interaction and a promising molecular probe candidate for elucidation of the role of cap‐dependent translation initiation in a host of pathophysiological states.  相似文献   

17.
18.
Playing polo : Small‐molecule inhibitors of polo‐like kinase 1 are mostly ATP‐competitive, and thus face enormous specificity hurdles. This communication explores the concept of inhibiting Plk1 with a small‐molecule inhibitor of the protein–protein interactions required for Plk1 function.

  相似文献   


19.
20.
Herein we review all the currently available ATP‐site and non‐ATP‐site ligands bound to p38α mitogen‐activated protein kinase (MAPK) available in the RCSB Protein Data Bank (PDB). The co‐crystallized inhibitors have been classified into different families according to their experimental binding mode and chemical structure, and the ligand–protein interactions are discussed using the most representative compounds. This systematic structural analysis could provide some take‐home lessons for drug discovery programs aimed at the rational identification and optimization of new p38α MAPK inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号