首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interferon-β (IFN-β) is a pleiotropic cytokine secreted in response to various pathological conditions and is clinically used for therapy of multiple sclerosis. Its application for treatment of cancer, infections and pulmonary diseases is limited by incomplete understanding of regulatory mechanisms of its functioning. Recently, we reported that IFN-β activity is affected by interactions with S100A1, S100A4, S100A6, and S100P proteins, which are members of the S100 protein family of multifunctional Ca2+-binding proteins possessing cytokine-like activities (Int J Mol Sci. 2020;21(24):9473). Here we show that IFN-β interacts with one more representative of the S100 protein family, the S100B protein, involved in numerous oncological and neurological diseases. The use of chemical crosslinking, intrinsic fluorescence, and surface plasmon resonance spectroscopy revealed IFN-β binding to Ca2+-loaded dimeric and monomeric forms of the S100B protein. Calcium depletion blocks the S100B–IFN-β interaction. S100B monomerization increases its affinity to IFN-β by 2.7 orders of magnitude (equilibrium dissociation constant of the complex reaches 47 pM). Crystal violet assay demonstrated that combined application of IFN-β and S100B (5–25 nM) eliminates their inhibitory effects on MCF-7 cell viability. Bioinformatics analysis showed that the direct modulation of IFN-β activity by the S100B protein described here could be relevant to progression of multiple oncological and neurological diseases.  相似文献   

2.
Interferon-β (IFN-β) is a pleiotropic cytokine used for therapy of multiple sclerosis, which is also effective in suppression of viral and bacterial infections and cancer. Recently, we reported a highly specific interaction between IFN-β and S100P lowering IFN-β cytotoxicity to cancer cells (Int J Biol Macromol. 2020; 143: 633–639). S100P is a member of large family of multifunctional Ca2+-binding proteins with cytokine-like activities. To probe selectivity of IFN-β—S100 interaction with respect to S100 proteins, we used surface plasmon resonance spectroscopy, chemical crosslinking, and crystal violet assay. Among the thirteen S100 proteins studied S100A1, S100A4, and S100A6 proteins exhibit strictly Ca2+-dependent binding to IFN-β with equilibrium dissociation constants, Kd, of 0.04–1.5 µM for their Ca2+-bound homodimeric forms. Calcium depletion abolishes the S100—IFN-β interactions. Monomerization of S100A1/A4/A6 decreases Kd values down to 0.11–1.0 nM. Interferon-α is unable of binding to the S100 proteins studied. S100A1/A4 proteins inhibit IFN-β-induced suppression of MCF-7 cells viability. The revealed direct influence of specific S100 proteins on IFN-β activity uncovers a novel regulatory role of particular S100 proteins, and opens up novel approaches to enhancement of therapeutic efficacy of IFN-β.  相似文献   

3.
The anoctamin (TMEM16) family of transmembrane protein consists of ten members in vertebrates, which act as Ca2+-dependent ion channels and/or Ca2+-dependent scramblases. ANO4 which is primarily expressed in the CNS and certain endocrine glands, has been associated with various neuronal disorders. Therefore, we focused our study on prioritizing missense mutations that are assumed to alter the structure and stability of ANO4 protein. We employed a wide array of evolution and structure based in silico prediction methods to identify potentially deleterious missense mutations in the ANO4 gene. Identified pathogenic mutations were then mapped to the modeled human ANO4 structure and the effects of missense mutations were studied on the atomic level using molecular dynamics simulations. Our data show that the G80A and A500T mutations significantly alter the stability of the mutant proteins, thus providing new perspective on the role of missense mutations in ANO4 gene. Results obtained in this study may help to identify disease associated mutations which affect ANO4 protein structure and function and might facilitate future functional characterization of ANO4.  相似文献   

4.
Antimicrobial proteins such as S100A12 and S100A8/A9 are highly expressed and secreted by neutrophils during infection and participate in human immune response by sequestering transition metals. At neutral pH, S100A12 sequesters Zn2+ with nanomolar affinity, which is further enhanced upon calcium binding. We investigated the pH dependence of human S100A12 zinc sequestration by using Co2+ as a surrogate. Apo-S100A12 exhibits strong Co2+ binding between pH 7.0 and 10.0 that progressively diminishes as the pH is decreased to 5.3. Ca2+-S100A12 can retain nanomolar Co2+ binding up to pH 5.7. NMR spectroscopic measurements revealed that calcium binding does not alter the side-chain protonation of the Co2+/Zn2+ binding histidine residues. Instead, the calcium-mediated modulation is achieved by restraining pH-dependent conformational changes to EF loop 1, which contains Co2+/Zn2+ binding Asp25. This calcium-induced enhancement of Co2+/Zn2+ binding might assist in the promotion of antimicrobial activities in humans by S100 proteins during neutrophil activation under subneutral pH conditions.  相似文献   

5.
6.
S100B is an astrocytic extracellular Ca2+-binding protein implicated in Alzheimer’s disease, whose role as a holdase-type chaperone delaying Aβ42 aggregation and toxicity was recently uncovered. Here, we employ computational biology approaches to dissect the structural details and dynamics of the interaction between S100B and Aβ42. Driven by previous structural data, we used the Aβ25–35 segment, which recapitulates key aspects of S100B activity, as a starting guide for the analysis. We used Haddock to establish a preferred binding mode, which was studied with the full length Aβ using long (1 μs) molecular dynamics (MD) simulations to investigate the structural dynamics and obtain representative interaction complexes. From the analysis, Aβ-Lys28 emerged as a key candidate for stabilizing interactions with the S100B binding cleft, in particular involving a triad composed of Met79, Thr82 and Glu86. Binding constant calculations concluded that coulombic interactions, presumably implicating the Lys28(Aβ)/Glu86(S100B) pair, are very relevant for the holdase-type chaperone activity. To confirm this experimentally, we examined the inhibitory effect of S100B over Aβ aggregation at high ionic strength. In agreement with the computational predictions, we observed that electrostatic perturbation of the Aβ-S100B interaction decreases anti-aggregation activity. Altogether, these findings unveil features relevant in the definition of selectivity of the S100B chaperone, with implications in Alzheimer’s disease.  相似文献   

7.
Calcium (Ca2+) exerts a pivotal role in controlling both physiological and detrimental cellular processes. This versatility is due to the existence of a cell-specific molecular Ca2+ toolkit and its fine subcellular compartmentalization. Study of the role of Ca2+ in cellular physiopathology greatly benefits from tools capable of quantitatively measuring its dynamic concentration ([Ca2+]) simultaneously within organelles and in the cytosol to correlate localized and global [Ca2+] changes. To this aim, as nucleoplasm Ca2+ changes mirror those of the cytosol, we generated a novel nuclear-targeted version of a Föster resonance energy transfer (FRET)-based Ca2+ probe. In particular, we modified the previously described nuclear Ca2+ sensor, H2BD3cpv, by substituting the donor ECFP with mCerulean3, a brighter and more photostable fluorescent protein. The thorough characterization of this sensor in HeLa cells demonstrated that it significantly improved the brightness and photostability compared to the original probe, thus obtaining a probe suitable for more accurate quantitative Ca2+ measurements. The affinity for Ca2+ was determined in situ. Finally, we successfully applied the new probe to confirm that cytoplasmic and nucleoplasmic Ca2+ levels were similar in both resting conditions and upon cell stimulation. Examples of simultaneous monitoring of Ca2+ signal dynamics in different subcellular compartments in the very same cells are also presented.  相似文献   

8.
Tropomyosin (Tpm) is one of the major actin-binding proteins that play a crucial role in the regulation of muscle contraction. The flexibility of the Tpm molecule is believed to be vital for its functioning, although its role and significance are under discussion. We choose two sites of the Tpm molecule that presumably have high flexibility and stabilized them with the A134L or E218L substitutions. Applying differential scanning calorimetry (DSC), molecular dynamics (MD), co-sedimentation, trypsin digestion, and in vitro motility assay, we characterized the properties of Tpm molecules with these substitutions. The A134L mutation prevented proteolysis of Tpm molecule by trypsin, and both substitutions increased the thermal stability of Tpm and its bending stiffness estimated from MD simulation. None of these mutations affected the primary binding of Tpm to F-actin; still, both of them increased the thermal stability of the actin-Tpm complex and maximal sliding velocity of regulated thin filaments in vitro at a saturating Ca2+ concentration. However, the mutations differently affected the Ca2+ sensitivity of the sliding velocity and pulling force produced by myosin heads. The data suggest that both regions of instability are essential for correct regulation and fine-tuning of Ca2+-dependent interaction of myosin heads with F-actin.  相似文献   

9.
Fructose 1,6-bisphosphatase 2 (Fbp2) is a gluconeogenic enzyme and multifunctional protein modulating mitochondrial function and synaptic plasticity via protein-protein interactions. The ability of Fbp2 to bind to its cellular partners depends on a quaternary arrangement of the protein. NAD+ and AMP stabilize an inactive T-state of Fbp2 and thus, affect these interactions. However, more subtle structural changes evoked by the binding of catalytic cations may also change the affinity of Fbp2 to its cellular partners. In this report, we demonstrate that Fbp2 interacts with Co2+, a cation which in excessive concentrations, causes pathologies of the central nervous system and which has been shown to provoke the octal-like events in hippocampal slices. We describe for the first time the kinetics of Fbp2 in the presence of Co2+, and we provide a line of evidence that Co2+ blocks the AMP-induced transition of Fbp2 to the canonical T-state triggering instead of a new, non-canonical T-state. In such a state, Fbp2 is still partially active and may interact with its binding partners e.g., Ca2+/calmodulin-dependent protein kinase 2α (Camk2α). The Fbp2-Camk2α complex seems to be restricted to mitochondria membrane and it facilitates the Camk2α autoactivation and thus, synaptic plasticity.  相似文献   

10.
Human wild type (wt) cardiac α-actin and its mutants p.A295S or p.R312H and p.E361G correlated with hypertrophic or dilated cardiomyopathy, respectively, were expressed by using the baculovirus/Sf21 insect cell system. The c-actin variants inhibited DNase I, indicating maintenance of their native state. Electron microscopy showed the formation of normal appearing actin filaments though they showed mutant specific differences in length and straightness correlating with their polymerization rates. TRITC-phalloidin staining showed that p.A295S and p.R312H exhibited reduced and the p.E361G mutant increased lengths of their formed filaments. Decoration of c-actins with cardiac tropomyosin (cTm) and troponin (cTn) conveyed Ca2+-sensitivity of the myosin-S1 ATPase stimulation, which was higher for the HCM p.A295S mutant and lower for the DCM p.R312H and p.E361G mutants than for wt c-actin. The lower Ca2+-sensitivity of myosin-S1 stimulation by both DCM actin mutants was corrected by the addition of levosimendan. Ca2+-dependency of the movement of pyrene-labeled cTm along polymerized c-actin variants decorated with cTn corresponded to the relations observed for the myosin-S1 ATPase stimulation though shifted to lower Ca2+-concentrations. The N-terminal C0C2 domain of cardiac myosin-binding protein-C increased the Ca2+-sensitivity of the pyrene-cTM movement of bovine, recombinant wt, p.A295S, and p.E361G c-actins, but not of the p.R312H mutant, suggesting decreased affinity to cTm.  相似文献   

11.
Guanylate cyclase-activating protein 1 (GCAP1), encoded by the GUCA1A gene, is a neuronal calcium sensor protein involved in shaping the photoresponse kinetics in cones and rods. GCAP1 accelerates or slows the cGMP synthesis operated by retinal guanylate cyclase (GC) based on the light-dependent levels of intracellular Ca2+, thereby ensuring a timely regulation of the phototransduction cascade. We found a novel variant of GUCA1A in a patient affected by autosomal dominant cone dystrophy (adCOD), leading to the Asn104His (N104H) amino acid substitution at the protein level. While biochemical analysis of the recombinant protein showed impaired Ca2+ sensitivity of the variant, structural properties investigated by circular dichroism and limited proteolysis excluded major structural rearrangements induced by the mutation. Analytical gel filtration profiles and dynamic light scattering were compatible with a dimeric protein both in the presence of Mg2+ alone and Mg2+ and Ca2+. Enzymatic assays showed that N104H-GCAP1 strongly interacts with the GC, with an affinity that doubles that of the WT. The doubled IC50 value of the novel variant (520 nM for N104H vs. 260 nM for the WT) is compatible with a constitutive activity of GC at physiological levels of Ca2+. The structural region at the interface with the GC may acquire enhanced flexibility under high Ca2+ conditions, as suggested by 2 μs molecular dynamics simulations. The altered interaction with GC would cause hyper-activity of the enzyme at both low and high Ca2+ levels, which would ultimately lead to toxic accumulation of cGMP and Ca2+ in the photoreceptor outer segment, thus triggering cell death.  相似文献   

12.
Hypertrophic cardiomyopathy (HCM), caused by mutations in thin filament proteins, manifests as moderate cardiac hypertrophy and is associated with sudden cardiac death (SCD). We identified a new de novo variant, c.656A>T (p.D219V), in the TPM1 gene encoding cardiac tropomyosin 1.1 (Tpm) in a young SCD victim with post-mortem-diagnosed HCM. We produced recombinant D219V Tpm1.1 and studied its structural and functional properties using various biochemical and biophysical methods. The D219V mutation did not affect the Tpm affinity for F-actin but increased the thermal stability of the Tpm molecule and Tpm-F-actin complex. The D219V mutation significantly increased the Ca2+ sensitivity of the sliding velocity of thin filaments over cardiac myosin in an in vitro motility assay and impaired the inhibition of the filament sliding at low Ca2+ concentration. The molecular dynamics (MD) simulation provided insight into a possible molecular mechanism of the effect of the mutation that is most likely a cause of the weakening of the Tpm interaction with actin in the "closed" state and so makes it an easier transition to the “open” state. The changes in the Ca2+ regulation of the actin-myosin interaction characteristic of genetic HCM suggest that the mutation is likely pathogenic.  相似文献   

13.
Ca2+‐regulated photoproteins use a noncovalently bound 2‐hydroperoxycoelenterazine ligand to emit light in response to Ca2+ binding. To better understand the mechanism of formation of active photoprotein from apoprotein, coelenterazine and molecular oxygen, we investigated the spectral properties of the anaerobic apo‐obelin–coelenterazine complex and the kinetics of its conversion into active photoprotein after exposure to air. Our studies suggest that coelenterazine bound within the anaerobic complex might be a mixture of N7‐protonated and C2(?) anionic forms, and that oxygen shifts the equilibrium in favor of the C2(?) anion as a result of peroxy anion formation. Proton removal from N7 and further protonation of peroxy anion and the resulting formation of 2‐hydroperoxycoelenterazine in obelin might occur with the assistance of His175. It is proposed that this conserved His residue might play a key role both in formation of active photoprotein and in Ca2+‐triggering of the bioluminescence reaction.  相似文献   

14.
Chelators are a common ingredient in most laundry detergents. They have a number of different functions such as reducing water hardness, assisting in keeping particulate soil in suspension and the removal of certain stains, thus complementing the action of the anionic surfactants. Another important group of components in a modern liquid detergent is enzymes, mainly proteases and amylases. As the most commonly used enzymes within the detergent industry are dependent on bound calcium ions to maintain conformational stability and function, the presence of both chelators and enzymes in a liquid detergent presents a challenge. The three commonly used Ca2+ chelators: citrate, DTPA (diethylene triamine pentaacetic acid) and HEDP (1-hydroxyethane-1,1-diyl)bis(phosphonic acid), were studied with regard to their impact on protease and amylase stability in buffer and in a model liquid detergent. Enzyme stability was characterized by differential scanning calorimetry (DSC) and activity studies, and correlated to the chelator-Ca2+ interaction properties. The results show that a chelator’s ability to reduce water hardness and its Ca2+ affinity are in reality two separate aspects in the context of their use in liquid detergents. In the presence of DTPA, stoichiometric surplus of free Ca2+ is required to maintain sufficient amylase and protease stability. In the presence of the weaker chelators, HEDP and citrate, the total Ca2+ concentration is more important to protein stability than stoichiometric balancing between chelator and Ca2+. Thus, for these chelators their total concentration only has a minor impact on the Ca2+ concentration required to maintain or improve enzyme storage stability. The results underline the importance of Ca2+ in liquid detergent formulations, and suggest how proper balancing of chelators and Ca2+ can be used to improve overall enzyme stability.  相似文献   

15.
Ca2+ is a highly important metal ion in biology and in the environment, and thus there is extensive work in developing sensors for Ca2+ detection. Although many Ca2+‐binding proteins are known, few nucleic acids can selectively bind Ca2+. DNA‐based biosensors are attractive for their high stability and excellent programmability. We report a RNA‐cleaving DNAzyme, EtNa, cooperatively binding two Ca2+ ions but to only one Mg2+. Four DNAzymes with known Ca2+‐dependent activity were compared, and the EtNa had the best selectivity for Ca2+. The EtNa is 90 times more active in Ca2+ than in Mg2+. Phosphorothioate (PS) modification showed that both non‐bridging oxygen atoms at the scissile phosphate contribute equally to Ca2+ binding. The pH–rate profile suggests two concurrent deprotonation reactions. EtNa was further engineered for Ca2+ sensing, and found to have a detection limit of 17 μm Ca2+ and excellent selectivity. The detection of Ca2+ in tap water was performed, and the result was comparable with that by ICP‐MS. This study offers new fundamental insights into Ca2+ binding by nucleic acids and improved metal selectivity by having multiple cooperative metal binding sites.  相似文献   

16.
A series of novel red‐emitting Ca8ZnLa1?xEux(PO4)7 phosphors were successfully synthesized using the high‐temperature solid‐state reaction method. The crystal structure, photoluminescence spectra, thermal stability, and quantum efficiency of the phosphors were investigated as a function of Eu3+ concentration. Detailed analysis of their structural properties revealed that all the phosphors could be assigned as whitlockite‐type β‐Ca3(PO4)2 structures. Both the PL emission spectra and decay curves suggest that emission intensity is largely dependent on Eu3+ concentration, with no quenching as the Eu3+ concentration approaches 100%. A dominant red emission band centered at 611 nm indicates that Eu3+ occupies a low symmetry sites within the Ca8ZnLa(PO4)7 host lattice, which was confirm by Judd‐Ofelt theory. Ca8ZnLa1?xEux(PO4)7 phosphors exhibited good color coordinates (0.6516, 0.3480), high color purity (~96.3%), and high quantum efficiency (~78%). Temperature‐dependent emission spectra showed that the phosphors possessed good thermal stability. A white light‐emitting diode (LED) device were fabricated by integrating a mixture of obtained phosphors, commercial green‐emitting and blue‐emitting phosphors into a near‐ultraviolet LED chip. The fabricated white LED device emits glaring white light with high color rendering index (83.9) and proper correlated color temperature (5570 K). These results demonstrate that the Ca8ZnLa1?xEux(PO4)7 phosphors are a promising candidate for solid‐state lighting.  相似文献   

17.
Tropomyosin is a two-chain coiled coil protein, which together with the troponin complex controls interactions of actin with myosin in a Ca2+-dependent manner. In fast skeletal muscle, the contractile actin filaments are regulated by tropomyosin isoforms Tpm1.1 and Tpm2.2, which form homo- and heterodimers. Mutations in the TPM2 gene encoding isoform Tpm2.2 are linked to distal arthrogryposis and congenital myopathy—skeletal muscle diseases characterized by hyper- and hypocontractile phenotypes, respectively. In this work, in vitro functional assays were used to elucidate the molecular mechanisms of mutations Q93H and E97K in TPM2. Both mutations tended to decrease actin affinity of homo-and heterodimers in the absence and presence of troponin and Ca2+, although the effect of Q93H was stronger. Changes in susceptibility of tropomyosin to trypsin digestion suggested that the mutations diversified dynamics of tropomyosin homo- and heterodimers on the filament. The presence of Q93H in homo- and heterodimers strongly decreased activation of the actomyosin ATPase and reduced sensitivity of the thin filament to [Ca2+]. In contrast, the presence of E97K caused hyperactivation of the ATPase and increased sensitivity to [Ca2+]. In conclusion, the hypo- and hypercontractile phenotypes associated with mutations Q93H and E97K in Tpm2.2 are caused by defects in Ca2+-dependent regulation of actin–myosin interactions.  相似文献   

18.
P26olf from olfactory tissue of frog, which may be involvedin olfactory transduction or adaptation, is a Ca2+-binding proteinwith 217 amino acids. The p26olf molecule contains two homologousparts consisting of the N-terminal half with amino acids 1–109and the C-terminal half with amino acids 110–217. Eachhalf resembles S100 protein with about 100 amino acids and containstwo helix–loop–helix Ca2+-binding structural motifsknown as EF-hands: a normal EF-hand at the C-terminus and apseudo EF-hand at the N-terminus. Multiple alignment of thetwo S100-like domains of p26olf with 18 S100 proteins indicatedthat the C-terminal putative EF-hand of each domain containsa four-residue insertion when compared with the typical EF-handmotifs in the S100 protein, while the N-terminal EF-hand ishomologous to its pseudo EF-hand. We constructed a three-dimensionalmodel of the p26olf molecule based on results of the multiplealignment and NMR structures of dimeric S100B(ßß)in the Ca2+-free state. The predicted structure of the p26olfsingle polypeptide chain satisfactorily adopts a folding patternremarkably similar to dimeric S100B(ßß). Each domainof p26olf consists of a unicornate-type four-helix bundle andthey interact with each other in an antiparallel manner formingan X-type four-helix bundle between the two domains. The twoS100-like domains of p26olf are linked by a loop with no sterichindrance, suggesting that this loop might play an importantrole in the function of p26olf. The circular dichroism spectraldata support the predicted structure of p26olf and indicatethat Ca2+-dependent conformational changes occur. Since theC-terminal putative EF-hand of each domain fully keeps the helix–loop–helixmotif having a longer Ca2+-binding loop, regardless of the four-residueinsertion, we propose that it is a new, novel EF-hand, althoughit is unclear whether this EF-hand binds Ca2+. P26olf is a newmember of the S100 protein family.  相似文献   

19.
Pure and Eu3+‐activated Ca4La(VO4)3O phosphors were prepared via three‐step solid‐phase synthesis. The phase formation and structure were investigated by X‐ray diffraction (XRD) with Rietveld refinements. All the samples crystallized in an apatite‐type structure. The morphological properties were measured via by SEM and EDS measurements. Ca4La(VO4)3O is a new vanadate optical material with a direct band feature and a band energy of 3.1 eV. The undoped Ca4La(VO4)3O phosphor presents self‐activated yellow luminescence from 400 nm to 750 nm with a maximum wavelength of 525 nm originating from VO4 groups. Luminescence characteristics of Ca4La(VO4)3O indicate that the phosphor is not sufficient for practical applications. In Eu3+‐activated Ca4La(VO4)3O, there is an efficient energy transfer from VO4 to Eu3+ ions. The luminescence spectra, concentration quenching, decay curves, color chromaticity, and quantum efficiencies (QE) of Ca4La(VO4)3O:Eu3+ were investigated. The phosphor presents optimal Eu3+ doping concentration of about 20 mol%. The dominant red emission in Ca4La(VO4)3O:Eu3+ is 615 nm from electronic 5D07F2 dipole transitions. The quantum efficiency and the luminescence stability of the pure and Eu‐activated Ca4La(VO4)3O were reported. The luminescence was discussed on the structural characteristics.  相似文献   

20.
Otolin-1 is a scaffold protein of otoliths and otoconia, calcium carbonate biominerals from the inner ear. It contains a gC1q domain responsible for trimerization and binding of Ca2+. Knowledge of a structure–function relationship of gC1q domain of otolin-1 is crucial for understanding the biology of balance sensing. Here, we show how natural variants alter the structure of gC1q otolin-1 and how Ca2+ are able to revert some effects of the mutations. We discovered that natural substitutions: R339S, R342W and R402P negatively affect the stability of apo-gC1q otolin-1, and that Q426R has a stabilizing effect. In the presence of Ca2+, R342W and Q426R were stabilized at higher Ca2+ concentrations than the wild-type form, and R402P was completely insensitive to Ca2+. The mutations affected the self-association of gC1q otolin-1 by inducing detrimental aggregation (R342W) or disabling the trimerization (R402P) of the protein. Our results indicate that the natural variants of gC1q otolin-1 may have a potential to cause pathological changes in otoconia and otoconial membrane, which could affect sensing of balance and increase the probability of occurrence of benign paroxysmal positional vertigo (BPPV).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号