首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe mutations in the orb gene, identified previously as an ovarian-specific member of a large family of RNA-binding proteins. Strong orb alleles arrest oogenesis prior to egg chamber formation, an early step of oogenesis, whereas females mutant for a maternal-effect lethal orb allele lay eggs with ventralized eggshell structures. Embryos that develop within these mutant eggs display posterior patterning defects and abnormal dorsoventral axis formation. Consistent with such embryonic phenotypes, orb is required for the asymmetric distribution of oskar and gurken mRNAs within the oocyte during the later stages of oogenesis. In addition, double heterozygous combinations of orb and grk or orb and top/DER alleles reveal that mutations in these genes interact genetically, suggesting that they participate in a common pathway. Orb protein, which is localized within the oocyte in wild-type females, is distributed ubiquitously in stage 8-10 orb mutant oocytes. These data will be discussed in the context of a model proposing that Orb is a component of the cellular machinery that delivers mRNA molecules to specific locations within the oocyte and that this function contributes to both D/V and A/P axis specification during oogenesis.  相似文献   

2.
3.
Anterior patterning of the Drosophila embryo depends on localization of bicoid (bcd) mRNA to the anterior pole of the developing oocyte, and bcd mRNA localization requires both the exuperantia (exu) gene and an intact microtubule cytoskeleton. To gain insight into the mechanism of anterior patterning, we have used time lapse laser scanning confocal microscopy to analyze transport of particles containing a Green Fluorescent Protein-Exu fusion (GFP-Exu), and to directly image microtubule organization in vivo. Our observations indicate that microtubules are required for three forms of particle movement within the nurse cells, while transport through the ring canals linking the nurse cells and oocyte appears to be independent of both microtubules and actin filaments. As particles enter the oocyte, a final microtubule-dependent step directs movement to the oocyte cortex. However, our observations and previous studies suggest that the polarity of the oocyte microtubule network is not in itself sufficient to generate anterior asymmetry, and that additional factors are required to restrict morphogens to the anterior pole. Based on these observations, we propose a multi-step anterior localization pathway.  相似文献   

4.
BACKGROUND: Drosophila axis formation requires a series of inductive interactions between the oocyte and the somatic follicle cells. Early in oogenesis, Gurken protein, a member of the transforming growth factor alpha family, is produced by the oocyte to induce the adiacent follicle cells to adopt a posterior cell fate. These cells subsequently send an unidentified signal back to the oocyte to induce the formation of a polarised microtubule array that defines the anterior-posterior axis. The polarised microtubules also direct the movement of the nucleus and gurken mRNA from the posterior to the anterior of the oocyte, where Gurken signals a second time to induce the dorsal follicle cells, thereby polarising the dorsal-ventral axis. RESULTS: In addition to its previously described role in the localisation of oskar mRNA, the mago nashi gene is required in the germ line for the transduction of the polarising signal from the posterior follicle cells. Using a new in vivo marker for microtubules, we show that mago nashi mutant oocytes develop a symmetric microtubule cytoskeleton that leads to the transient localisation of bicoid mRNA to both poles. Furthermore, the oocyte nucleus often fails to migrate to the anterior, causing the second Gurken signal to be sent in the same direction as the first. This results in a novel phenotype in which the anterior of the egg is ventralised and the posterior dorsalised, demonstrating that the migration of the oocyte nucleus determines the relative orientation of the two principal axes of Drosophila. The mago nashi gene is highly conserved from plants to animals, and encodes a protein that is predominantly localised to nuclei. CONCLUSIONS: The mago nashi gene plays two essential roles in Drosophila axis formation: it is required downstream of the signal from the posterior follicle cells for the polarisation of the oocyte microtubule cytoskeleton, and has a second, independent role in the localisation of oskar mRNA to the posterior of the oocyte.  相似文献   

5.
Vasa, a DEAD box mRNA helicase similar to eIF4A, is involved in pole plasm assembly in the Drosophila oocyte and appears to regulate translation of oskar and nanos mRNAs. However, several vasa alleles exhibit a wide range of early oogenesis phenotypes. Here we report a detailed analysis of Vasa function during early oogenesis using novel as well as previously identified hypomorphic vasa alleles. We find that vasa is required for the establishment of both anterior-posterior and dorsal-ventral polarity of the oocyte. The polarity defects of vasa mutants appear to be caused by a reduction in the amount of Gurken protein at stages of oogenesis critical for the establishment of polarity. Vasa is required for translation of gurken mRNA during early oogenesis and for achieving wild-type levels of gurken mRNA expression later in oogenesis. A variety of early oogenesis phenotypes observed in vasa ovaries, which cannot be attributed to the defect in gurken expression, suggest that vasa also affects expression of other mRNAs.  相似文献   

6.
Exocytosis of cortical granules in mouse eggs is required to produce the zona pellucida block to polyspermy. In this study, we examined the role of microfilaments and microtubules in the regulation of cortical granule movement toward the cortex during oocyte maturation and anchoring of cortical granules in the cortex. Fluorescently labeled cortical granules, microfilaments, and microtubules were visualized using laser-scanning confocal microscopy. It was observed that cortical granules migrate to the periphery of the oocyte during oocyte maturation. This movement is blocked by the treatment of oocytes with cytochalasin D, an inhibitor of microfilament polymerization, but not with nocodazole or colchicine, inhibitors of microtubule polymerization. Cortical granules, once anchored at the cortex, remained in the cortex following treatment of metaphase II-arrested eggs with each of these inhibitors; i.e., there was neither inward movement nor precocious exocytosis. Finally, the single cortical granule-free domain that normally becomes localized over the metaphase II spindle was not observed when the chromosomes become scattered following microtubule disruption with nocodazole or colchicine. In these instances a cortical granule-free domain was observed over each individual chromosome, suggesting that the chromosome or chromosome-associated material, and not the spindle, dictates the localization of the cortical granule-free domain.  相似文献   

7.
The animal/vegetal axis of the zebrafish egg is established during oogenesis, but the molecular factors responsible for its specification are unknown. As a first step towards the identification of such factors, we present here the first demonstration of asymmetrically distributed maternal mRNAs in the zebrafish oocyte. To date, we have distinguished three classes of mRNAs, characterized by the stage of oocyte maturation at which they concentrate to the future animal pole. We have further characterized one of these mRNAs, zorba, which encodes a homologue of the Drosophila Orb and Xenopus CPEB RNA-binding proteins. Zorba belongs to the group of earliest mRNAs to localize at the animal pole, where it becomes restricted to a tight subcortical crescent at stage III of oogenesis. We show that this localization is independent of microtubules and microfilaments, and that the distribution of Zorba protein parallels that of its mRNA.  相似文献   

8.
9.
It has long been appreciated that the localization of cytoplasmic determinants in the egg can provide the foundation for patterning in the embryo. Differences in cell fate among the early blastomeres are thus a consequence of asymmetric distributions of informational molecules prior to fertilization. The frog egg has a single axis of asymmetry present prior to fertilization, the animal/vegetal axis, and the localization of developmental information appears to be polarized along this axis. Such developmental information can be localized as either RNA or protein; localized RNAs are well documented in the Xenopus oocyte, and some are thought to play roles in axial patterning. While it is apparent that not all of the localized maternal components are RNAs, much less is known about maternal proteins that might be localized in the egg. In the present study, we have taken a novel approach to identify localized maternal proteins within the Xenopus egg. Using a subtractive immunization strategy, we have generated monoclonal antibodies which recognize antigens that are restricted to the vegetal cortex of fertilized eggs. Analysis of biogenesis during oogenesis reveals two distinct patterns of localization to the cortex. At least three of these localized antigens are proteins, and these localized proteins could represent maternal determinants with roles in patterning.  相似文献   

10.
In Xenopus, localization of a rare class of mRNAs during oogenesis is believed to initiate pattern formation in the early embryo. We have determined the pattern of RNA localization for one of these RNAs, Xcat-2, which encodes a putative RNA-binding protein related to Drosophila nanos (Mosquera, L., Forristall, C., Zhou, Y. and King, M. L. (1993) Development 117, 377-386). Xcat-2 is exclusively localized to the mitochondrial cloud in stage I oocytes, moves with this body into the vegetal cortex during stage II and, later, partitions into islands consistent with it being a component of the germ plasm. As previously shown, Vg1 is not localized to the vegetal cortex until stage IV and distributes to all vegetal blastomeres during development. We found a direct correlation between the localized condition of these RNAs and their recovery in a detergent-insoluble fraction. We present evidence suggesting that differential RNA binding to a cytoskeletal component(s) in the vegetal cortex determines the pattern of inheritance for that RNA in the embryo.  相似文献   

11.
Bep mRNAs are localized at the animal pole of P. lividus eggs. In the present communication the secondary structures of the 3'UTRs of the bep1, bep3 and bep4 mRNAs are reported. The minimal lengths of these regions required to bind the 54-kDa protein, previously shown to be involved in localization and anchoring of these RNAs, is estimated. Microinjection of the bep3 3'UTR into egg shows that this RNA fragment is also able to become localized to one of the egg poles, as happens for the entire bep3 RNA.  相似文献   

12.
During animal development cellular differentiation is often preceded by an asymmetric cell division whose polarity is determined by the orientation of the mitotic spindle. In the fruit fly, Drosophila melanogaster, the oocyte differentiates in a 16-cell syncytium that arises from a cystoblast which undergoes 4 synchronous divisions with incomplete cytokinesis. During these divisions, spindle orientation is highly ordered and is thought to impart a polarity to the cyst that is necessary for the subsequent differentiation of the oocyte. Using mutations in the Drosophila cytoplasmic dynein heavy chain gene, Dhc64C, we show that cytoplasmic dynein is required at two stages of oogenesis. Early in oogenesis, dynein mutations disrupt spindle orientation in dividing cysts and block oocyte determination. The localization of dynein in mitotic cysts suggests spindle orientation is mediated by the microtubule motor cytoplasmic dynein. Later in oogenesis, dynein function is necessary for proper differentiation, but does not appear to participate in morphogen localization within the oocyte. These results provide evidence for a novel developmental role for the cytoplasmic dynein motor in cellular determination and differentiation.  相似文献   

13.
14.
Translational recruitment of maternal mRNAs is an essential process in early metazoan development. To identify genes required for this regulatory pathway, we have examined a collection of Drosophila female-sterile mutants for defects in translation of maternal mRNAs. This strategy has revealed that maternal-effect mutations in the cortex and grauzone genes impair translational activation and cytoplasmic polyadenylation of bicoid and Toll mRNAs. Cortex embryos contain a bicoid mRNA indistinguishable in amount, localization, and structure from that in wild-type embryos. However, the bicoid mRNA in cortex embryos contains a shorter than normal polyadenosine (poly(A)) tail. Injection of polyadenylated bicoid mRNA into cortex embryos allows translation demonstrating that insufficient polyadenylation prevents endogenous bicoid mRNA translation. In contrast nanos mRNA, which is activated by a poly(A)-independent mechanism, is translated in cortex embryos, indicating that the block in maternal mRNA activation is specific to a class of mRNAs. Cortex embryos are fertilized, but arrest at the onset of embryogenesis. Characterization of grauzone mutations indicates that the phenotype of these embryos is similar to cortex. These results identify a fundamental pathway that serves a vital role in the initiation of development.  相似文献   

15.
16.
Xklp2 is a plus end-directed Xenopus kinesin-like protein localized at spindle poles and required for centrosome separation during spindle assembly in Xenopus egg extracts. A glutathione-S-transferase fusion protein containing the COOH-terminal domain of Xklp2 (GST-Xklp2-Tail) was previously found to localize to spindle poles (Boleti, H., E. Karsenti, and I. Vernos. 1996. Cell. 84:49-59). Now, we have examined the mechanism of localization of GST-Xklp2-Tail. Immunofluorescence and electron microscopy showed that Xklp2 and GST-Xklp2-Tail localize specifically to the minus ends of spindle pole and aster microtubules in mitotic, but not in interphase, Xenopus egg extracts. We found that dimerization and a COOH-terminal leucine zipper are required for this localization: a single point mutation in the leucine zipper prevented targeting. The mechanism of localization is complex and two additional factors in mitotic egg extracts are required for the targeting of GST-Xklp2-Tail to microtubule minus ends: (a) a novel 100-kD microtubule-associated protein that we named TPX2 (Targeting protein for Xklp2) that mediates the binding of GST-Xklp2-Tail to microtubules and (b) the dynein-dynactin complex that is required for the accumulation of GST-Xklp2-Tail at microtubule minus ends. We propose two molecular mechanisms that could account for the localization of Xklp2 to microtubule minus ends.  相似文献   

17.
Microtubule nucleation by gamma-tubulin-containing rings in the centrosome   总被引:2,自引:0,他引:2  
The microtubule cytoskeleton of animal cells does not assemble spontaneously, but instead requires the centrosome. This organelle consists of a pair of centrioles surrounded by a complex collection of proteins known as the pericentriolar material (PCM). The PCM is required for microtubule nucleation. The minus, or slow-growing, ends of microtubules are embedded in the PCM and the plus, or fast-growing, ends project outwards into the cytoplasm during interphase, or into the spindle apparatus during mitosis. gamma-Tubulin is the only component of the PCM that is so far implicated in microtubule nucleation. Here we use immuno-electron microscopic tomography to show that gamma-tubulin is localized in ring structures in the PCM of purified centrosomes without microtubules. When these centrosomes are used to nucleate microtubule growth, gamma-tubulin is localized at the minus ends of the microtubules. We conclude that microtubule-nucleating sites within the PCM are ring-shaped templates that contain multiple copies of gamma-tubulin.  相似文献   

18.
The Tx1L elements constitute a family of site-specific non-LTR retrotransposons found in the genome of the frog Xenopus laevis . The elements have two open reading frames (ORFs) with homology to proteins of retroviruses and other retroelements. This study demonstrates an expected activity of one of the element-encoded proteins. The RNA binding properties of ORF1p, the product of the first ORF of Tx1L, were examined after expression from RNA injected into Xenopus oocytes. Using sucrose gradient sedimentation and non-denaturing gel electrophoresis, we show that ORF1p associates with RNA in cytoplasmic ribonucleoprotein (RNP) particles. Discrete RNPs are formed with well-defined mobilities. The ORF1p RNPs are distinct from endogenous RNPs that contain stored oocyte mRNAs and two specific endogenous mRNAs do not become associated with ORF1p. ORF1p appears to be capable of associating with its own mRNA and with other injected RNAs, independent of specific recognition sequences. Although nuclear localization of ORF1p was anticipated, based both on the supposed mechanism of transposition and on the presence of a potential nuclear localization signal, no significant fraction of the protein was found in the oocyte nucleus. Nonetheless, the RNA binding capability of ORF1p is consistent with the proposed model for transposition of non-LTR retrotransposons.  相似文献   

19.
We describe a nonradioactive preembedding in situ hybridization protocol using digoxigenin-labeled RNA probes and tyramide signal amplification to increase the sensitivity of detection. The protocol is sensitive enough for electron microscopic localization of endogenous messenger RNAs encoding beta-actin and amphoterin. Three visualization methods were compared: diaminobenzidine enhanced by nickel, Nanogold enhanced by silver and gold toning, and fluorescently labeled tyramides. Diaminobenzidine and Nanogold can be used in both light and electron microscopy. The nickel-enhanced diaminobenzidine was the most sensitive visualization method. It is easy to accomplish but a drawback is poor spatial resolution, which restricts its use at high magnifications. Nanogold visualization has considerably better spatial resolution and is therefore recommended for electron microscopy. Fluorescent tyramides, especially TRITC-tyramide, offer a good detection method for fluorescence and confocal microscopy. The methods were used to localize amphoterin and beta-actin mRNAs in motile cells. Both mRNAs were found in the soma and cell processes. In double labeling experiments, beta-actin mRNA localized to filamentous structures that also contained ribosomal proteins. Especially in the cortical cytoplasm, beta-actin mRNA was associated with actin filaments. Direct localization to microtubules was only rarely seen. (J Histochem Cytochem 47:99-112, 1999)  相似文献   

20.
GLD-1, a putative RNA binding protein, is essential for oocyte development in Caenorhabditis elegans. A gld-1 null mutation abolishes hermaphrodite oogenesis and confers a tumorous germline phenotype in which presumptive female germ cells exit the meiotic pathway and return to the mitotic cell cycle. Here we demonstrate that gld-1(null) germ lines express female-specific, but not male-specific, molecular markers, indicating that gld-1 acts downstream of sexual fate specification to regulate oocyte differentiation. Immunolocalization studies identify GLD-1 as a cytoplasmic germline protein that displays differential accumulation during germline development. First, germ cells that are in the mitotic cell cycle contain low levels of GLD-1 that likely reflect a nonessential gld-1 function (negative regulation of proliferation in the mitotic germ line) revealed in previous genetic studies. Second, entry of presumptive oocytes into the meiotic pathway is accompanied by a strong increase in GLD-1 expression/accumulation. GLD-1 levels are high through the pachytene stage but fall to background as germ cells exit pachytene and complete oogenesis. The meiotic prophase accumulation pattern is consistent with GLD-1's essential role in oocyte differentiation, which may be to repress the translation of a subset of maternal RNAs synthesized during early oogenesis until late oogenesis when GLD-1 is absent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号