首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
含酚废水的氧化法处理   总被引:9,自引:0,他引:9  
含酚废水是一种危害极大的工业废水,经济而有效地处理含酚废水极为重要。氧化法是一类极具发展前途的含酚废水处理技术。本文综述了氧化法处理含酚废水的研究进展。  相似文献   

2.
以苯酚为模型化合物,对紫外光照射下含酚废水的光催化降解行为进行了研究。四种不同产地的TiO2被选择为光催化剂。实验结果表明苯酚初始浓度100mg/L,TiO2加入量80mg/100mL溶液,反应100min条件下,苯酚转化率达96%。含有少量金红石型TiO2的锐钛型TiO2的光催化活性最高。100mL 100mg/L的苯酚溶液中最佳的TiO2加入量为80mg。苯酚初始浓度低于100mg/L条件下,苯酚光催化降解反应速率遵循表观一级反应速率方程。  相似文献   

3.
催化湿式氧化法处理含酚废水   总被引:2,自引:0,他引:2  
进行了CuO/Al2O3、CuO MnO2/Al2O3、CuO K2O/Al2O3、CuO/CeO2催化剂在160℃和1.6MPa的氧气压力条件下,催化氧化法处理含酚废水的实验,结果表明催化剂CuO/CeO2具有最高的催化活性,COD为3000mg/L左右含酚废水,反应50min后降解97%。并测定了在135~165℃和1.6MPa氧气压力下,加入催化剂CuO/Al2O3氧化含酚废水的COD与时间的的关系,求取了反应的动力学方程。初步探讨了氧分压和溶液的pH对催化氧化反应速率的影响。  相似文献   

4.
含酚废水是指造纸、炼焦、炼油、塑料、农药、医药合成等行业产生的有机废水。由于其可生化性低,常规生物法处理效率不高。高级氧化技术作为高效的水处理方法受到广泛关注。综述了近年来高级氧化技术对于降解酚类废水的研究进展,比较了其处理废水的效果,指出了未来对高级氧化法处理酚类废水的方向。  相似文献   

5.
介绍了中小型企业含酚废水处理的新工艺。该方法采用过氧化氢作氧化剂 ,金属盐硫酸亚铁作催化剂 ,氧化处理后的微量酚废水循环使用 ,可作为瓦楞纸箱粘合剂的防腐剂和防潮剂。  相似文献   

6.
吸附法处理含酚废水的研究进展   总被引:3,自引:0,他引:3  
含酚废水在我国水污染控制中被列为重点解决的有害废水之一,介绍了近年来含酚废水的吸附处理技术,包括常用吸附剂和其它一些低成本的吸附剂及吸附法.同时为降低吸附剂制作成本,提高吸附剂吸附性能提出了意见.  相似文献   

7.
阐述了处理含酚废水的研究进展。根据处理方法的不同,大致分为物理法、化学法、生物法3大类,其中物理法包括吸附法、溶剂萃取法和液膜法;化学法包括氧化法、沉淀法、光催化法;生物法包括活性污泥法、酶处理技术以及固定化微生物技术。比较了3类含酚废水处理方法的优缺点,并对将来处理工业含酚废水的研究进行了展望。  相似文献   

8.
氧化法处理模拟含酚废水的实验研究   总被引:2,自引:0,他引:2  
李超  钟宏  周立  赵刚 《应用化工》2009,38(11):1556-1560
采用化学氧化法在自制反应器中处理模拟含酚废水,就KMnO4、MnO2和Fenton试剂三种氧化剂对酚的去除效果进行了实验研究。实验表明,苯酚的去除率随通气量、氧化剂的投加量的增加而升高,随pH值的增大而明显下降;通过各自最佳操作条件对比得出,Fenton试剂的去除效果最佳。当溶液pH值为6,n(H2O2)∶n(Fe2+)=4∶1,Fe2+的初始浓度为1.5 mmol/L,Fenton试剂对酚的去除率达到了97.67%。  相似文献   

9.
谢飞 《山西化工》2012,32(5):82-84
通过臭氧氧化处理,降低含有较高苯酚浓度废水中的苯酚浓度。对不同苯酚浓度的废水,用自制的设备控制废水的流量、臭氧量、氧化时间和催化剂用量,找出各种条件对臭氧除酚效率的影响规律,得出较佳处理方案。实验结果达到了预期目标。  相似文献   

10.
针对化工集装罐清洗废水中含酚废水浓度大的特点,采用湿式催化氧化法进行了较深入的研究。对硝酸铜-AC制备CuO/AC催化剂过程中的浸渍液浓度、焙烧温度、焙烧时间等影响因素进行探讨;用该催化剂催化氧化降解模拟苯酚废水,对反应温度、氧化剂投加量、催化剂投加量、反应时间等工艺参数进行优化,确定最佳反应条件并进行了应用研究。研究结果表明,硝酸铜-AC制备CuO/AC催化剂的最佳条件为:硝酸铜质量分数为3%,浸渍温度为30℃,浸渍时间为6 h,焙烧温度为300℃,焙烧时间为3 h。湿式催化氧化法处理苯酚废水的最佳工艺条件为:反应温度为170℃,反应时间为1 h,催化剂投加质量浓度为2 g/L,氧化剂H2O2按m(H2O2)∶m(COD)=3投加,含酚清洗废水的COD去除率达到95%以上,处理效果显著。  相似文献   

11.
本文采用微波催化湿式氧化技术处理含酚废水,考察了催化剂投加量、氧化剂添加量、反应温度、反应时间、初始pH值等对废水处理效果的影响.确定了最佳工艺条件:硫酸铜投加量3g/L,过氧化氢投加量40 g/L,初始pH值5.5,反应温度80℃、反应时间60min.该工艺条件下,废水TOC去除率可达到85%以上,可生化性测试B/C...  相似文献   

12.
13.
介绍了液-液萃取、膜萃取和液膜萃取3种萃取处理含酚废水方法,叙述了它们的原理、特性、工艺以及应用优势和存在问题。认为高效、低毒、溶解度小、廉价萃取剂的开发,多种萃取剂混合协同作用的机理研究对提升整个萃取效率起关键作用;膜萃取应从膜材料着手,加强制备廉价、高通量的膜组件;并着力研究膜溶胀和膜污染的机理和控制方法;液膜法目前尚缺乏大规模工业化应用实例,如何提升其稳定性还需进一步的研究。  相似文献   

14.
《应用化工》2022,(10):2158-2161
园林废弃物经微生物发酵制得的有机覆盖物木奇具有多孔和吸附特性,考察其对水中苯酚的吸附能力,研究苯酚去除率与温度、p H、木奇添加量和振荡时间之间的关系。结果表明,100 m L 50 mg/L的苯酚模拟水样,在木奇用量为1 g左右,p H值为3,吸附温度20℃,振荡时间为60 min,对苯酚的去除率可达到65. 9%。Freundlich吸附等温式更适合描述木奇对苯酚的吸附过程,偏向于复杂的多重吸附。木奇对苯酚吸附的n值为3. 571,说明木奇的吸附能力比较强,园林铺装木奇对雨水中污染物的吸滞具有积极的作用。  相似文献   

15.
园林废弃物经微生物发酵制得的有机覆盖物木奇具有多孔和吸附特性,考察其对水中苯酚的吸附能力,研究苯酚去除率与温度、p H、木奇添加量和振荡时间之间的关系。结果表明,100 m L 50 mg/L的苯酚模拟水样,在木奇用量为1 g左右,p H值为3,吸附温度20℃,振荡时间为60 min,对苯酚的去除率可达到65. 9%。Freundlich吸附等温式更适合描述木奇对苯酚的吸附过程,偏向于复杂的多重吸附。木奇对苯酚吸附的n值为3. 571,说明木奇的吸附能力比较强,园林铺装木奇对雨水中污染物的吸滞具有积极的作用。  相似文献   

16.
实验研究了模拟含酚废水(300mg·L~(-1))在二维电解槽中的电化学氧化过程.通过静态实验考察了支持电解质浓度、电解电压、曝气量以及初始pH值对对苯二酚去除效果的影响.结果表明:对苯二酚去除率随电解质浓度增大而先增大后减小;随施加电压的增加,对苯二酚的去除率有所提高;弱酸、中性、弱碱条件下有利于对苯二酚的去除;在弱碱条件下,对苯二酚去除率最高.当电解质Na_2SO_4浓度为0.04 mol·L~(-1),电压值为5 V,曝气量为50 L·h~(-1),pH值为8.5时,对苯二酚去除率为85.80%.  相似文献   

17.
催化湿式氧化技术是处理含酚废水的有效技术,此技术的关键是合适催化剂的研制和选用。本文对催化湿式氧化含酚废水催化剂的活性组分、载体等情况进行了综述,并指出选用最佳活性组分和载体的组合能够提高催化剂对苯酚的降解效率,研发高活性、高稳定性及廉价的催化剂是催化湿式氧化含酚废水的发展方向。  相似文献   

18.
含酚废水对环境和生物有较大危害,是一种常见的化工废水。活性炭作为良好的吸附剂被广泛用于污水处理,也常被用于吸附处理含酚废水。最新的研究集中于开发利用各种含碳原材料,并探究活性炭制备和改性方法,以改善活性炭对酚类的吸附性能。部分机理研究则关注活性炭的孔隙结构和表面官能团及其对吸附酚类性能的影响。本文从活性炭的制备和改性出发,归纳整理活性炭吸附酚类的特性和机理,分析吸附过程的主要影响因素,并对研究发展方向进行推论和展望。分析表明含碳量高的原材料适合制备活性炭,尤其是含碳废弃物。活性炭的苯酚吸附性能受比表面积和表面官能团的共同影响,这对于活性炭的制备和改性有指导意义。活性炭吸附苯酚的具体应用中,需要控制粒度、pH、温度、吸附时间和竞争吸附等影响因素。  相似文献   

19.
综述了近几年国内外对含酚废水的电化学处理方法,包括电催化氧化法、三维电极法、电-Fenton法、三维电极法与其他技术的联用;指出电化学技术处理含酚废水存在的问题以及发展方向。  相似文献   

20.
电化学方法处理含酚废水的研究进展   总被引:1,自引:0,他引:1  
含酚废水毒性高,对环境污染大,因而含酚废水的处理技术受到了广泛的关注.电化学方法具有易控制、易建立密闭循环且无二次污染等优点,在处理含酚废水方面应用很广.综述了各种电化学方法的基本原理及研究现状,并指出了今后的发展方向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号