首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用P204-仲辛醇皂化萃取体系从金精矿氰化尾渣酸浸液中萃取分离铁, 初步研究其萃取机理, 并考察了萃取体系、P204浓度和料液初始pH值、含铁浓度及加入介质NaCl对Fe(Ⅲ)萃取的影响以及相比(O/A)、H2SO4浓度对Fe(Ⅲ)反萃的影响。实验结果表明:P204和仲辛醇对酸浸液中的Fe(Ⅲ)具有一定协同萃取效应, 仲辛醇作为萃取体系中的相转移试剂, 尤其能改善铁的反萃效率。同时, 采用氨水皂化后的萃取体系铁的提取率显著提高。P204、仲辛醇以及260#溶剂油以1∶1∶2的体积比混合作为萃取体系, 在相比为2的条件下, 调整含铁10.18 g/L的原酸浸液的pH值接近2.0, 经过1级萃取, 萃余液中含铁低于0.25 g/L; 以25%(体积分数)的H2SO4反萃, 有机相中的铁基本被反萃完全。通过萃取和反萃, 铁离子溶液中杂质含量大大减少, 尤其是砷的含量。  相似文献   

2.
TRPO-TBP混合体系对碱性氰化液中金的萃取   总被引:1,自引:0,他引:1  
周丽  李明玉 《矿冶工程》2010,30(3):86-89
用三烷基氧化膦(TRPO)、磷酸三丁酯(TBP)与煤油组成的混合萃取体系, 对碱性氰化浸金液中Au(Ⅰ)的萃取和反萃取进行了研究。考察了有机相中TRPO及TBP体积分数、料液中盐析剂浓度、Au(Ⅰ)浓度、pH值及萃取时间等因素对萃取率的影响, 对比了不同反萃剂对负载有机相中Au(Ⅰ)的反萃效果。结果表明, 采用8%TRPO+8%TBP+84%煤油组成的有机相, 在相比O/A=1∶1时, 对Au(Ⅰ)浓度为28.54 mg/L、盐析剂硫酸锂浓度为1.0 mol/L的碱性氰化液进行萃取时, Au(Ⅰ)的单级萃取率可达96%以上; 在体系温度为60 ℃, 用蒸馏水作反萃液对负载有机相中的Au(Ⅰ)进行反萃时, 反萃率达到94.08%。  相似文献   

3.
采用自制的胺类萃取剂N1633作萃取剂, 考察了其在钨萃取冶金中的性能。当有机相组成为40%N1633+40%异辛醇+磺化煤油(体积比), 在pH=8.27、相比(O/A)为1∶1、振荡时间10 min、萃取温度25 ℃时, 对WO3含量116.25 g/L的钨酸钠溶液进行萃取, 单级萃取率大于99%。绘制了N1633的萃取等温线, 经过三级萃取饱和容量达到109.03 g/L。用2.5 mol/L的氨水对负载有机相进行反萃, 相比2.5∶1时, 反萃液中WO3浓度达到174.31 g/L。绘制了负载有机相的反萃等温线, 理论上以相比1.25∶1进行四级逆流萃取可将有机相中的钨基本反萃, 反萃液中WO3的饱和反萃浓度达到202.82 g/L。采用0.6 mol/L的硫酸以相比2∶1进行酸化再生后, N1633仍具有良好的萃取性能。  相似文献   

4.
对新型萃取剂G8315从湿法冶金系统的含锗沉矾后液中萃取回收锗的性能进行了研究。结果表明, 有机相中G8315的浓度、相比、萃取时间、沉矾液中硫酸浓度等因素对锗的萃取都有显著的影响。常温下萃取工艺条件为: G8315的浓度(体积分数)为10%, 相比O∶A=1∶2, 料液的硫酸浓度为45 g/L, 萃取时间为3 min。在此条件下进行单级萃取, 锗的萃取率为83.46%;反萃的最佳条件为: 氢氧化钠的浓度为6 mol/L, 相比为O∶A=2∶1, 反萃时间为2 min, 在此条件下进行两级错流反萃, 锗的反萃率高达96.5%。  相似文献   

5.
P507从硫酸体系中萃取镓的研究   总被引:3,自引:0,他引:3  
基于P507诸多优点及镓提取现状, 对P507从硫酸体系中萃取镓进行了研究, 分别考察了料液酸度、萃取剂浓度、时间、浓度、温度等因素对萃取与反萃的影响并绘制等温线, 结果表明, 在最佳条件下, 采用15%P507(体积分数)+磺化煤油作为有机相, 按相比O/A=1∶4, 经过3级逆流萃取, 萃取率可达到98.56%, 负载用60 g/L H2SO4溶液反萃, 按相比O/A=5∶1, 经过5级逆流反萃, 反萃率达98.02%, 镓富集近20倍。  相似文献   

6.
N235萃取处理含铁废盐酸工艺研究   总被引:3,自引:1,他引:3  
张寅生  王成彦 《矿冶》2002,11(4):66-68
采用 2 5 %N2 3 5+6 5 %煤油 +10 %丙三醇 (均为体积百分比 )的有机相组成 ,在相比O/A =1和1级萃取的条件下 ,处理含铁 ( 11g/L)、高酸 ( 5 85mol/LHCl)废溶液。结果铁的萃取率达 99 8%,萃余液含盐酸 5 4mol/L、铁小于 0 0 5g/L。实现了铁、酸的分离 ,盐酸得到再生利用。操作中分相良好 ,没有第 3相。  相似文献   

7.
以韶关冶炼厂真空炉渣氧压浸出液为原料,以P204及Rex t-32为萃取剂萃取分离与富集锗组分,考察萃取有机相组成、酸度pH、萃取时间、相比等因素,对锗分离与富集效果的影响.研究结果表明:pH=2.0,相比V (O)/V (W)=1∶1,萃取10 min ,一次萃取锗萃取率达96.89,;富锗有机相用4mol/L氢氧化钠溶液反萃锗,相比V (O )/V (W )=3∶1,反萃15 min ,经3级反萃后反萃液中锗含量为7.81 g/L,反萃率为95.37,(以渣计);锗反萃液用1∶1硫酸中和,控制终点pH为8.0~8.5,可得到品位为37.62,的富锗料,锗沉淀率为90.51,.  相似文献   

8.
糠基乙基硫醚萃取Pd(Ⅱ)性能的研究   总被引:1,自引:0,他引:1  
研究了糠基乙基硫醚从酸性介质中萃取Pd(Ⅱ)的性能。实验结果表明, 随着糠基乙基硫醚浓度的增大, 待萃液中H+浓度升高, Pd(Ⅱ)的萃取率逐渐升高。糠基乙基硫醚的浓度为8%, 相比O/A=1时, 待萃液的c(H+)=1.0 mol/L, 萃取1 min, 反应已达到平衡, Pd(Ⅱ)的萃取率大于92.2%。实验测定了糠基乙基硫醚对Pd(Ⅱ)萃取饱和容量, 在实验条件下高于9 g/L。用氨水反萃Pd(Ⅱ)时, 氨水的浓度在10 mol/L时, 对Pd(Ⅱ)的反萃性能最高。载Pd(Ⅱ)有机相中ρ(Pd(Ⅱ))=0.965 g/L, 氨水的浓度为10 mol/L, 相比A/O=3∶1, 反萃时间t=30 min, Pd(Ⅱ)的反萃率达到99.8%。  相似文献   

9.
利用离心萃取器研究硫酸体系中P507和P204协同萃取分离镍钴的效果。结果表明,P507和P204组成的协同萃取体系对镍钴的分离存在正协同效应,在有机相组成VP507∶VP204为3∶2,VO∶VA为1∶1,水相酸度为0.2 mol/L,流通量为10 L/h,转速为2 300 r/min,常温条件下,钴的二级逆流萃取率为95.8%,βCo/Ni为5 680。负载有机相用2 mol/L的H2SO4溶液2级逆流反萃,Co2+的反萃取率为93.5%,反萃液中的钴离子浓度为12.6 g/L。  相似文献   

10.
硫酸型季铵盐从石煤苏打浸出液中萃取钒的研究   总被引:1,自引:0,他引:1  
采用自制硫酸型季铵盐作萃取剂,直接从石煤苏打浸出液中萃取钒,主要考察了有机相组成、浸出液p H值、相比O/A、萃取温度、振荡混合时间对钒萃取率的影响,并考察了不同反萃剂对钒反萃的影响。实验结果表明,当有机相组成为8%硫酸型季铵盐+5%仲辛醇+87%磺化煤油,料液p H=9.5,相比O/A=1/1,萃取温度为25℃,振荡混合时间为3 min时,钒单级萃取率可达98%以上;用0.5 mol/L Na OH+1.5 mol/L Na2CO3作反萃剂,钒反萃率为94.14%,用6 mol/L NH3·H2O+3 mol/L(NH4)2SO4作反萃剂,钒反萃率为57.58%。  相似文献   

11.
针对现有氯化物体系废蚀刻液中铜难以电解回收利用的现状,采用LIX984作为萃取剂,探索其对废蚀刻液中铜的萃取及反萃转型性能.系统考察了萃取剂浓度、料液酸度、萃取时间等对铜萃取的影响,硫酸浓度、反萃时间等对铜反萃的影响,绘制了萃取及反萃等温线并模拟了多级逆流过程。结果表明,采用LIX984萃取铜时,为确保铜萃取回收率,应将废蚀刻液稀释至铜浓度接近0.5mol/L或以下。铜131.24g/L、氯231.6g/L,pH=2.45的废蚀刻液稀释4倍后,可直接采用20%(体积分数)的LIX984按相比O/A=4/1、萃取时间10min、萃取温度25℃条件进行萃取,经过5级逆流萃取,铜萃取率为97.1%,氯萃取率仅0.05%。负载铜有机相采用200g/L的硫酸溶液,按照相比O/A=6/1、反萃时间5min、反萃温度25℃条件进行萃取,经过7级逆流反萃,铜反萃率为98.62%。得到的含铜47.16g/L、氯0.18g/L硫酸铜反萃液可直接用于电解回收,得到满足GB/T 467—1997中产品Cu-CATH2要求的金属铜。  相似文献   

12.
针对现有氯化物体系废蚀刻液中铜难以电解回收利用的现状,本文采用LIX984作为萃取剂,探索其对废蚀刻液中的铜萃取及反萃转型研究,系统考察了萃取剂浓度、料液酸度、萃取时间等对铜萃取的影响,硫酸浓度、反萃时间等对铜反萃的影响,绘制萃取及反萃等温线并模拟多级逆流过程。研究表明:采用LIX984萃取铜时,为确保铜萃取回收率,应将废蚀刻液稀释至Cu浓度接近0.5 mol/L或以下。文中含Cu 131.24 g/L、Cl 231.6 g/L,pH=2.45的废蚀刻液稀释4倍后,可直接采用20 %(体积分数)的LIX984 按相比O/A=4:1,萃取时间10 min,萃取温度25 ℃,经过5级逆流萃取,Cu萃取率为97.1 %,Cl萃取率仅0.05 %。负载铜有机相采用200 g/L的硫酸溶液,按照相比O/A=6:1,反萃时间5 min,反萃温度25 ℃,经过7级逆流反萃,铜反萃率为98.62 %,并得到含Cu 47.16 g/L、Cl 0.18 g/L的硫酸铜反萃液,可直接用于电解回收,得到的金属铜达到国家标准GB/T467-1997 Cu-CATH2要求。  相似文献   

13.
采用t-BAMBP+二甲苯体系对萃铯余液进行萃取分离提铷试验研究,考察了料液碱度、萃取剂浓度、萃取相比、萃取时间等因素对萃取提铷效果的影响。结果表明:在料液碱度为0.4 mol/L,有机相中t-BAMBP体积分数为30%,萃取相比VO/VA=3 : 1,洗涤相比VO'/VA'=4 : 1,常温萃取3 min的条件下,对萃铯余液进行四级萃取四级洗涤萃取模拟试验,铷的萃取率达94.6%。采用多轮萃取可进一步提高反萃液中铷的纯度,为得到高纯度铷盐提供了技术依据。   相似文献   

14.
采用有机协同萃取剂将氧氯化锆母液中的锆萃取到有机相中得到含锆萃取物, 锆萃取物经洗涤、反萃、氨沉和灼烧得到核能级氧化锆产品。试验结果表明:当料液中游离酸酸度为5 mol/L, 有机相组成为20%TOPO+10%Cynex272+70%磺化煤油, 萃取相比为2〖DK〗∶1时, 锆铪分离效果较好, 锆萃取率达到98.68%;有机相洗涤试验中铪反洗率为97.33%, 锆损耗率仅1.25%;盐酸酸度为0.5 mol/L时, 锆反萃效果较佳, 达到98.90%。最终制得的氧化锆产品纯度达到99.90%, 铪含量仅为0.0030%。  相似文献   

15.
研究了用N263从氯化物体系中萃取Zn2+、Fe2+和Fe3+,考察了振荡时间、萃取剂浓度、改性剂浓度、相比(O/A)、盐酸浓度对Zn2+、Fe2+和Fe3+萃取率的影响。结果表明,在有机相组成为20% N263+20%正己醇+60% 260#溶剂油、相比O/A=1 GA6FA 1、振荡时间5 min和25℃条件下,Zn2+、Fe2+和Fe3+的单级萃取率分别为90.97%、0.79%和75.85%,分离系数βZn2+/Fe2+和βZn2+/Fe3+分别为1 260和3.21。经过2级逆流萃取,水相中Zn2+浓度从9.61 g/L降至0.36 g/L,负载有机相采用0.5 mol/L H2SO4反萃,Zn2+的反萃率为41.86%,Fe3+的反萃率大于97%。N263萃取金属离子的机理是阴离子交换反应,计算了萃取反应相关的热力学函数值,结果表明,N263萃取Zn2+为放热反应,Fe3+的萃取反应为吸热反应,常温下Zn2+和Fe3+的萃取反应均可自发进行。   相似文献   

16.
以废石化催化剂碱性浸出液为研究对象, 进行了N263三级逆流萃取+超声波一级NH4Cl反萃+三级NaOH、NaCl逆流反萃工艺研究。结果表明, 优化萃取条件为: 初始pH值8.5、萃取体系30%N263+5%仲辛醇+65%磺化煤油、萃取时间3 min、相比O/A=1∶1; 一段反萃优化条件为: NH4Cl浓度2.0 mol/L、反萃相比O/A=5∶2、超声波功率500 W、反萃时间2 min; 二段反萃优化条件为: NaOH浓度1.0 mol/L、NaCl浓度0.5 mol/L、反萃相比O/A=3∶2、反萃时间3 min。以上优化条件下对浸出液进行钒的提取, 钒萃取率和反萃率分别为99.15%和99.36%, 对一段和二段反萃液进行钒产品回收, 可分别获得高纯V2O5产品(>99.9%)和普通V2O5产品(>99%)。  相似文献   

17.
吴展  李伟  陈志华  宁瑞 《矿冶工程》2013,33(2):105-107
采用高效萃取剂AD100从粗硫酸镍溶液中萃取回收金属铜, 考察了初始pH值、相比(A∶O)、萃取剂体积浓度、反应时间等因素对铜回收率的影响。实验结果显示, 在最优的条件下, 即: 初始pH值为2.0, 相比A∶O=3∶1, 萃取剂体积浓度为25%, 萃取时间5 min, 常温下一级萃取即可回收其中94%以上的铜, 铁、镍的萃取率分别低于0.05%和0.01%。对负载有机相进行反萃, 结果显示, 采用2 mol/L的硫酸在相比为1∶1的条件下一级反萃可回收95%的铜。  相似文献   

18.
将P204与Cyanex272构成混合萃取剂用于萃取红土镍矿浸出液中的Co、Mn、Fe。系统研究了协同萃取的最优萃取剂比例、水相pH值、萃取平衡时间、萃取温度及反萃的最合适酸浓度。结果表明,有机相比例P204∶Cyanex272∶TBP∶磺化煤油=5∶15∶5∶75,待处理溶液pH值为4.5、萃取温度60℃、平衡时间8min为最佳萃取条件;反萃工序中,采用50g/L的H2SO4溶液反萃钴,110g/L的H2SO4溶液反萃锰,7mol/L的HCl溶液反萃铁可获得较好的反萃效果。  相似文献   

19.
为了解决目前工业萃取剂对Cu2+选择性差以及对Zn2+萃取能力差的问题, 合成了一种新型萃取剂MPPE, 并考察了由MPPE组成的有机相在氨溶液体系中对Cu2+、Ni2+、Co2+和Zn2+的萃取与反萃性能。结果表明, 在萃取剂MPPE浓度0.06 mol/L、总铵浓度1.2 mol/L、相比(O/A)1/1、混合时间5 min、pHeq=6.44条件下, Cu2+萃取率达到95.8%, 而Ni2+、Co2+和Zn2+萃取率分别为2.8%、3.7%和8.1%, 分离系数βCu/Ni、βCu/Co和βCu/Zn分别高达666.20、508.42和219.55。而当其他萃取条件不变, 将平衡pH值调为8.23时, βZn/Ni和βZn/Co都达最大值, 分别为137.90和74.20。在硫酸浓度1 mol/L、反萃时间6 min以及反萃相比1/1条件下对铜和锌的负载有机相进行反萃, 锌和铜离子反萃率均在97%以上。  相似文献   

20.
研究了用N235从大洋多金属结核熔炼-锈蚀-萃取工艺中所产出的萃铜余液中萃取分离钴的方法。实验结果表明, N235萃取钴效果明显, 负载有机相中的钴能被稀酸反萃完全。采用N235萃取和稀酸反萃方法可以把Co(Ⅱ)、Ni(Ⅱ)分离开。从含钴0.85 g/L的料液中, 按相比VO/VA= 1/2, 经四级逆流萃取, 二级反萃可将钴富集到15.20 g/L, 萃余液中含钴0.0055 g/L, 萃余液中Ni/Co高达1 838, 反萃液中Co/Ni =1 520, 产品质量符合优质工业氯化钴质量要求, 钴镍萃取分离效果甚佳, 钴的回收率大于98%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号