首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
利用钛与B2O3、B4C和稀土钇之间的化学反应,采用真空非自耗电弧炉熔炼工艺,原位合成多元、多尺度、不同形状增强体增强的钛基复合材料--(TiB TiC Y2O3)/Ti.利用热力学机理分析了制备该种材料的可行性,通过X射线衍射仪、光学显微镜、扫描电镜、电子探针和透射电镜分析了复合材料的物相组成、增强体的微观形貌和材料的显微组织.结果表明:复合材料的增强体为TiB、TiC和Y2O3;生成的增强体分布均匀;复合材料的晶粒非常细小;TiB为针状;TiC为等轴状和近似等轴状;Y2O3的形貌随着稀土Y含量的增加从近似等轴状粗化生长为树枝状;材料中存在较多纳米级的球状增强体;增强体TiB、TiC、Y2O3和钛基体界面干净,没有界面反应物存在.  相似文献   

2.
采用真空电弧熔炼技术制备了不同含量B4C的Ti6Al4V/B4C钛基复合材料,并采用光学显微镜、扫描电子显微镜、显微硬度计、静态压缩及拉伸测试等对其微观组织及力学性能进行了表征分析. 结果表明,电弧熔炼过程B4C与钛基体原位反应生成TiB,TiC及TiB2相,TiB呈现一维生长晶须状,TiC呈现颗粒状,在B4C质量分数为10%时生成块状TiB2,并可能会形成特殊的中空棱柱状结构Ti(BxCy)聚合物. 原位反应生成的TiB2可显著提高钛基复合材料的显微硬度. 当B4C质量分数为0.5%时,钛基复合材料原位反应生成的连续网状、均匀分布的TiB和TiC试样具有最优力学性能,试样最大抗压强度值达到1 990 MPa,最大压缩应变为35.5%,压缩性能超过熔炼钛合金,抗拉强度达到1 034 MPa,与熔炼钛合金材料相比提高近24%,但塑性有所降低,并随着B4C含量增加,抗拉强度逐渐下降,其断裂方式由韧性断裂转变为脆性断裂.  相似文献   

3.
Al2O3–TiC composites with a content of 30 wt% TiC with various size of starting powders were manufactured by hot pressing. The Vickers hardness, bending strength and fracture toughness were studied. The experiment results show that the starting powder size has a significant effect on the properties of the Al2O3–TiC composites. The maximum bending strength of the submicron Al2O3 with the fine TiC powders addition is 712 MPa, while the maximum fracture toughness of the same Al2O3 matrix with the large TiC powders addition is 6.5 MPa m1/2.  相似文献   

4.
While processing Y2O3 dispersed γ-TiAl, Y2O3 particles which dissolved during hot isostatic pressing (HIP’ing) were found to precipitate during the heat treatment in the form of a mixed Al–Y oxide. To understand the chemical reaction that occurs between Y2O3 and γ-TiAl during the heat treatment cycle, a powder mixture comprising of γ-TiAl and 10 wt.% Y2O3 was mechanically alloyed (MA’d) for 8 h and the milled powder was subjected to differential thermal analysis (DTA) at 1150 °C prior to analyzing it using X-ray diffraction technique. The present study clearly demonstrates that aluminum in the combined form either as γ-TiAl or Al2O3 reacts in a similar manner with Y2O3 when milled and heat treated at 1150 °C. In either case there is formation of Al2Y4O9 (2Y2O3.Al2O3).  相似文献   

5.
采用正交试验方法研究热压压力、烧结温度和Y2O3含量等3个因素对铁基胎体硬度、致密度、抗弯强度和断口微观形貌等的影响,并获得较优的烧结工艺参数。在此基础上,制备含Y2O3的铁基金刚石工具,并对其断口形貌、耐磨性和锋利度等进行检测及分析。结果表明:含Y2O3的铁基结合剂胎体,其相对密度和硬度的影响因素次序为Y2O3含量>烧结温度>热压压力,抗弯强度的影响因素次序为烧结温度>Y2O3含量>热压压力;且Y2O3能促进铁基金刚石胎体组织的致密化,降低其烧结温度。在烧结温度为780 ℃、热压压力为51 kN的较优烧结工艺下,适量的Y2O3能使金刚石工具的孔隙率减小、黏结状况改善,并增强黏结剂对金刚石磨粒的把持能力。   相似文献   

6.
The subsolidus phase relations in the ZnO–MoO3–B2O3, ZnO–MoO3–WO3 and ZnO–WO3–B2O3 ternary systems have been investigated by the means of X-ray powder diffraction (XRD). There is no ternary compound in all the systems. There are five binary compounds and five tie lines in the ZnO–MoO3–B2O3 system. This system can be divided into six 3-phase regions. There are three binary compounds and three tie lines in the ZnO–MoO3–WO3 system. This system can be divided into four 3-phase regions. There are four binary compounds and four tie lines in the ZnO–WO3–B2O3 system. This system can be divided into five 3-phase regions. The possible component regions for ZnO single crystal flux growth were discussed. The phase diagram of Zn3B2O6–ZnWO4 pseudo-binary system has been constructed, and the result reveals this system is eutectic system. The eutectic temperature is 1007 °C and eutectic point component is 70 mol% Zn3B2O6.  相似文献   

7.
We calculated the binary phase diagrams B2O3–Ga2O3, B2O3–In2O3 and B2O3–Al2O3, and the Gibbs energy of formation of the binary compounds, using experimental liquidus data. The B2O3–Ga2O3 system is of industrial importance, because liquid B2O3, in which Ga2O3 is not very soluble, is used to protect GaAs during growth of single crystals of GaAs. During recovery of noble metals B2O3 is added to slags containing Al2O3 to lower the melting point and the viscosity. The B2O3–In2O3 system is of much less importance to industry. In all three systems we have a liquid miscibility gap, and also solid binary compounds, none of which melt congruently. The miscibility gaps are not surprising, because even in the B2O3–Bi2O3 system where four congruently melting compounds are present, a liquid miscibility gap exists close to B2O3.  相似文献   

8.
Copper matrix was reinforced with Al2O3 particles of different size and amount by internal oxidation and mechanical alloying accomplished using high-energy ball milling in air. The inert gas-atomised prealloyed copper powder containing 1 wt.% Al as well as a mixture of electrolytic copper powder and 3 wt.% commercial Al2O3 powder served as starting materials. Milling of Cu-1 wt.% Al prealloyed powder promoted formation of fine dispersed particles (1.9 wt.% Al2O3, approximately 100 nm in size) by internal oxidation. During milling of Cu-3 wt.% Al2O3 powder mixture the uniform distribution of commercial Al2O3 particles has been obtained. Following milling, powders were treated in hydrogen at 400 °C for 1 h in order to eliminate copper oxides formed at the surface during milling. Compaction was executed by hot-pressing. Compacts processed from 5 to 20 h-milled powders were additionally subjected to high-temperature exposure at 800 °C in order to examine their thermal stability and electrical conductivity. Compacts of Cu-1 wt.% Al prealloyed powders with finer Al2O3 particles and smaller grain size exhibited higher microhardness than compacts of Cu-3 wt.% Al2O3 powder mixture. This indicates that nano-sized Al2O3 particles act as a stronger reinforcing parameter of the copper matrix than micro-sized commercial Al2O3 particles. Improved thermal stability of Cu-1 wt.% Al compacts compared to Cu-3 wt.% Al2O3 compacts implies that nano-sized Al2O3 particles act more efficiently as barriers obstructing grain growth than micro-sized particles. Contrary, the lower electrical conductivity of Cu-1 wt.% Al compacts is the result of higher electron scatter caused by nano-sized Al2O3 particles.  相似文献   

9.
MoSi2 matrix composites (RWM) reinforced by the addition of both WSi2 and La2O3 were fabricated by mechanical alloying and self-propagating high-temperature synthesis (SHS) technique. This composite was analysed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). It is difficult to synthesize RWM composite by mechanical alloying with Mo–W–Si–La2O3 powder mixture, and suitable by self-propagating high-temperature synthesis. The hardness and toughness of MoSi2 was improved significantly by the addition of both, WSi2 and La2O3 more than by only WSi2. By adding 0.8 wt.% La2O3 and 50 mol.% WSi2 into the MoSi2 matrix, this composite has the highest hardness and toughness and exhibits more wear resistance than monolithic MoSi2 during the sliding wear test under oil lubrication, in this case, the material removal mechanism has been observed to be micro-cutting and micro-fracture.  相似文献   

10.
The addition of 5 wt.% SiO2, a viscous second phase, to 8 mol% Y2O3 cubic stabilized ZrO2 (8Y-CSZ) made superplastic 8Y-CSZ. This material had a fine grain size of 0.4 μm and exhibited deformations in tension as large as 520% at 1430 °C with a strain rate of 1.0 × 10−4 s−1.  相似文献   

11.
An inductively coupled plasma mass spectrometry (ICP-MS) method with just one standard series for direct determination of trace rare earth impurities in various rare earth oxides was developed. The spectral interference in ICP-MS analysis of high-purity neodymium (Nd2O3) was thoroughly estimated. For the investigation of matrix effect, high-purity Y2O3 was used as model sample and the experimental results showed that the maximal matrix tolerant amount obtained by stepwise dilution method is comparable to that obtained by conventional method with the use of higher purity Y2O3 as matrix. Under the selected conditions, no obvious matrix effect can be found with the matrix (Y) concentration of less than 500 μg mL−1. For real sample analysis, 100 μg mL−1 of matrix was chosen as the sample concentration. The proposed method was applied to the analysis of trace rare earth impurities in different high-purity rare earth oxides (Y2O3, Pr6O11, Nd2O3, Dy2O3, Er2O3), and the analytical results obtained were in good agreement with the recommended values. The detection limits of the method for rare earth elements were 1–21 ng L−1 with the R.S.D varying between 2.9 and 7.8%, and the percentage recovery ranged from 93 to 115% for the spiked samples. This method was characterized with simplicity, rapidity, sensitivity, small sample amount required, and no internal standard/matrix matching requirements.  相似文献   

12.
原位合成(TiB+Al2O3)/Ti复合材料   总被引:4,自引:0,他引:4  
吕维洁  杨志峰  张荻  吴人洁 《铸造》2002,51(5):277-279
应用热力学 ,分析了Ti与B2 O3 、Al之间的化学反应原位合成TiB和Al2 O3 增强的钛基复合材料的合成机理。设计了普通的非自耗电弧熔炼工艺制备该钛基复合材料。借助X射线衍射仪 (XRD)和扫描电镜 (SEM )分析了原位合成复合材料的物相和增强体的形态。结果表明 :原位合成的增强体确实为TiB和Al2 O3 。增强体在基体合金上分布较为均匀 ,增强体形状为短纤维状。原位合成增强体的加入显著提高了钛基复合材料的洛氏硬度。  相似文献   

13.
周乐君  杨洋  王万林  潘子航 《连铸》2021,40(6):54-58
含钛钢连铸过程中,部分TiO2夹杂物进入保护渣,导致渣性能恶化,进而影响铸坯质量。采用旋转法,研究了TiO2在保护渣中的溶解速率与旋转速度、温度、B2O3含量等因素的关系。结果表明,TiO2在保护渣中溶解速率与棒旋转的角速度的平方根成正比;且在温度升高时,TiO2在保护渣中的溶解速率有明显的上升;在w(B2O3)=0~9%时,随着B2O3含量上升,TiO2溶解速率升高,溶解活化能由162.99降至123.95 J/mol,但B2O3含量对溶解速率的影响要明显小于温度的影响。以上研究结果较好阐明了TiO2在保护渣中的溶解机理,为含钛钢连铸过程提供一定的参考。  相似文献   

14.
为研究CBN用量对Ti3AlC2结合剂CBN复合材料的影响,使用不同质量配比的Ti3AlC2粉体和CBN粉体通过放电等离子体烧结的方式制备试样,并对比其物相组成和显微形貌。结果表明:当CBN质量分数为10%时,试样的主相为Ti3AlC2、CBN和TiC;当CBN质量分数为20%~40%时,生成了TiC、TiN、AlN、TiB2等物相。另一方面,当CBN质量分数为10%和20%时,CBN表面会形成厚约10 μm的过渡层;当CBN质量分数为30%和40%时,CBN与基体间没有过渡层。若选用粒度尺寸为10 μm的CBN(质量分数为10%)进行烧结,则复合材料中出现许多气孔,基体主相为TiC等轴晶粒且在CBN表面形成厚度1~2 μm的过渡层。CBN质量分数越大或粒度尺寸越小,其同Ti3AlC2的反应越充分、过渡层越薄。   相似文献   

15.
Ti3SiC2是一种六方晶体结构的特殊陶瓷材料,兼具金属与陶瓷的优异性能,拥有优良的高温强度、抗氧化性及可加工性等优点,广泛应用于耐磨润滑材料。本文综述其同金属和SiC、金刚石、TiC、Al2O3等复合后的优异性能和广阔应用,并展望其在和金属、陶瓷、金刚石等材料复合领域的研究方向。   相似文献   

16.
The electrodeposited Y2O3-dispersed γ-Ni+γ-Ni3Al coatings on Ni substrates were developed by the conversion of electrodeposited Ni-Al-Y2O3 films with dispersed AI microparticles in Ni matrix into Ni3Al by vacuum annealing at 800 ℃ for 3 h. For comparison, Y2O3-free γ-Ni+γ'-Ni3Al coatings with a similar AI content were also prepared by vacuum annealing the electrodeposited microparticle-dispersed composite coatings of Ni-AI under the same condition. SEM and TEM characterizations show that the electrodeposited Y2O3-dispersed γ+γ' coatings exhibit finer grains, a more homogeneous distribution of γ', and a narrowed γ' phase spacing compared with the electrodeposited Y2O3-free γ-γ' coatings. The oxidation at 1 000 ~C shows that the addition of Y2O3 significantly improves the oxidation resistance of the electrodeposited γ+γ'coatings. The effect of Y2O3 particles on the microstructure and oxidation behavior of the electrodeposited γ+y' coatings was discussed in detail.  相似文献   

17.
Chemically vapor deposited Al2O3 coatings, due to their high hardness and chemical inertness, are currently the state of art in the cutting tool industry. The conventional high deposition temperature of about 1050 °C for Al2O3 coatings, based on the water–gas shift process, has to a great extend restricted the development of several hybrid coatings, such as TiC/TiN/TiCN/Al2O3. To overcome this limitation, alternate systems to deposit Al2O3 at moderate temperatures have been investigated. Systems using NO–H2, H2O2, NO2–H2 and HCOOH were identified and thermodynamic calculations were performed to evaluate them as potential sources of oxygen donors to form Al2O3 in the moderate temperature range of 700–950 °C. Preliminary results have clearly demonstrated that it is possible to grow moderate temperature alumina (using such alternate sources) on the TiC/TiN coated cemented carbide substrates.  相似文献   

18.
原位合成TiC和TiB增强钛基复合材料的微观结构与力学性能   总被引:21,自引:5,他引:16  
利用钛与B4C之间的自蔓延高温合成反应经普通的熔钐工艺原位合成制备了TiC、TiB增强的钛基复合材料。光学金相、EPMA、TEM和X射线衍射的研究结果表明:存在匠两种不同形状的增强体,即短纤维状TiB晶须和等轴、近似等轴状TiC粒子。TiB、Ti基体界面洁净,没有明显的界面反应,而TiC、Ti基体界面有非化学配比的TiC过度层存在。由于增强体承受载荷,基体合金晶粒细化以及高密度位错的存在,制备钛基  相似文献   

19.
The possibility of providing TiC–Al2O3 nanocomposite as a useful composite from low-cost raw materials has been investigated. Impure Ti chips were placed in a high energy ball mill with carbon black and aluminum powder and sampled after different times. XRD analysis showed that TiC has been synthesized after 10 h of milling. It could be observed from the width of XRD patterns’ peaks that the size of produced TiC crystallites is in the order of nanometer. In order to forming of TiC–Al2O3 composite, heat treatment was performed in different temperatures. Investigations have revealed that formation temperature of TiC as the dominant phase decreased for the milled specimens during heat treatment, also nanocrystalline TiC–Al2O3 composite was formed in this situation. Furthermore milling led to increase of strain and decrease of TiC lattice parameter while during heat treatment nanocrystalline grains grow up and strain decreases.  相似文献   

20.
李博洋  耿鑫  姜周华  王闯 《连铸》2020,39(5):42-46
以CaO-SiO2-Al2O3-Na2O-CaF2-MgO为基础渣系,采用旋转动力学方法研究了不同碱度、BaO质量分数(0~15%)、B2O3质量分数(0~15%)对连铸保护渣吸收Al2O3或TiO2速率的影响以及吸收前后矿相变化。结果表明,保护渣吸收TiO2的速率要远大于吸收Al2O3的速率;添加BaO或B2O3后均能提高保护渣吸收Al2O3和TiO2的能力;保护渣主要物相为钙镁黄长石(2CaO·MgO·2SiO2)、钙铝黄长石(2CaO·Al2O3·2SiO2)、枪晶石(3CaO·2SiO2·CaF2)及玻璃相(Na2O·Al2O3·SiO2);添加BaO后,钙镁黄长石转变为重硅酸钡钙镁(2CaO·MgO·2SiO2·BaO),并抑制黄长石和枪晶石晶体长大;当添加B2O3的质量分数不低于10%,保护渣形成的物相为玻璃相。试验条件下,不同碱度的保护渣和添加B2O3的保护渣中TiO2仍以TiO2形式存在,而在添加BaO的保护渣中,TiO2形成钙钛矿。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号