首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
以油页岩颗粒作为干燥物料,以过热蒸汽和热空气分别作为干燥介质,进行了油页岩干燥实验的研究。当颗粒粒径减小时,油页岩干燥速率越大;过热蒸汽和热空气温度增大时,干燥速率也越大。对比相同条件下过热蒸汽和热空气干燥油页岩的平均干燥速率,发现当干燥介质温度超过逆转点温度时,过热蒸汽条件下的平均干燥速率大于热空气下的数值。实验得出粒径分别为9,7,5 mm的油页岩颗粒逆转点温度值分别是154,179,177℃;逆转点温度值是个变量,随颗粒粒径大小变化而变化。颗粒粒径越大时逆转点温度值越小,粒径较小时逆转点变化不大。采用薄层干燥模型对油页岩的干燥数据进行动力学模拟,可得修正Page模型(Ⅱ)干基水分比w模拟值与实验值的最大绝对偏差是12%,综合比较发现修正Page模型(Ⅱ)能较好地描述油页岩在过热蒸汽条件下的干燥过程。  相似文献   

2.
针对现有热风和烟道气煤调湿工艺存在易爆风险的问题,提出了一种过热蒸汽为干燥介质的煤调湿新工艺.利用自制穿流干燥装置,以热风和过热蒸汽为干燥介质对炼焦煤进行干燥调湿.研究了不同干燥介质温度、料层厚度和干燥介质流量条件下的炼焦煤干燥特性,计算了热风和过热蒸汽煤调湿工艺处理单位质量物料所需外部输入能耗,绘制了炼焦煤水分变化曲线和能耗分布等值图.结果表明:提高干燥介质温度、减少料层厚度、增大干燥介质流量均有利于炼焦煤干燥,缩短煤调湿过程时间;相比于热风干燥介质,利用过热蒸汽对炼焦煤进行调湿,调湿速率可提高40%以上,能耗可降低35%以上.  相似文献   

3.
呼伦贝尔褐煤等温干燥过程   总被引:3,自引:2,他引:1       下载免费PDF全文
孙晓林  郭晓镭  陆海峰  龚欣 《化工学报》2015,66(7):2628-2635
以水分含量高达40 %的呼伦贝尔褐煤煤粉为实验物料,利用热重法研究了等温条件下的干燥特性,对比分析了温度、颗粒粒度对干燥过程的影响。实验结果表明,呼伦贝尔褐煤干燥过程具有明显的恒速干燥阶段,其特征与干燥温度和自由水含量密切相关。获得了呼伦贝尔褐煤煤粉在不同温度和粒度条件下的临界含水量(MCcr)和平衡含水量(MCeq),发现随着颗粒粒度的减小,褐煤煤粉干燥速率略有增大,但当粒度较小时,粒度因素对干燥过程的影响不明显。MCcr与MCeq均随温度的升高而减小,而随着颗粒粒度的减小,MCcr略有降低,MCeq略有增大。实验结果可以为褐煤制粉干燥工艺条件的选择和优化提供依据。  相似文献   

4.
分析了精对苯二甲酸(PTA)干燥过程中干燥温度,物料初始含湿量,空气流速对干燥速率的影响。结果表明:PTA干燥过程由预热阶段、恒速阶段和降速阶段组成,临界含湿量为5%。随着干燥温度或初始含湿量的升高,干燥速率升高,随着载气流量的升高,干燥速率变化不明显。干燥温度对干燥速率的影响最为显著。通过模型比较得出合适的PTA干燥模型为Page模型,模型计算值与实验值吻合较好。  相似文献   

5.
颗粒表面料层干燥机理   总被引:8,自引:3,他引:5       下载免费PDF全文
颗粒表面料层干燥是喷雾流化干燥技术的基本环节. 为了探讨喷雾流化干燥机理,着重探讨了物料表面蒸汽分压与物料湿含量的关系,首次建立了单颗粒表面料层干燥的物理模型,并进行了数值计算,计算结果与实验结果吻合较好.分析了惰性载体的密度、比热容、直径及热导率对干燥时间的影响,对喷雾流化干燥的深入研究以及放大、优化设计等具有重要的指导意义.  相似文献   

6.
在循环流化床(CFB,内径0.104 m×高2.35 m)内,以淀粉、碳酸钙、氧化铝为对象,研究物料特性对循环流化床干燥速率和分离速率的影响;以氧化铝为对象,研究粒径和干燥介质湿度对循环流化床干燥和分离特性的影响。结果表明:循环流化床适用于不同特性的C类颗粒干燥和分离;碳酸钙干燥速率较大、易分离,氧化铝和玉米淀粉干燥速率较小;气速对玉米淀粉和氧化铝的干燥速率影响较大;在实验操作范围内平均干燥速率和分离速率随粒径增大而增加,随干燥介质湿度增加而降低。  相似文献   

7.
酒精污泥在内热式振动流化床中的干燥特性研究   总被引:2,自引:0,他引:2  
以干污泥颗粒为惰性粒子,采用内热式振动流化床对酒精污泥进行了干燥实验,考察了流化气速、进气温度、振动频率和内加热功率对污泥干燥特性的影响,分析了污泥湿含量和干燥速率的变化规律。结果表明,干燥速率随着流化气速、进气温度和内加热功率的增加而增加,随着振动频率增加呈先增长后降低的趋势。适度提高流化气速、进气温度、振动频率和内加热功率可以降低最终湿含量。将干燥过程分为降速I段和降速Ⅱ段,根据扩散传质理论,建立了内热式振动流化床中污泥干燥的数学模型,模型计算值和实测值的误差在20%以内,符合较好。实验结果为酒精污泥干燥过程的工业设计和操作提供了实验依据。  相似文献   

8.
基于气固流态化原理的油页岩干燥动力学   总被引:2,自引:1,他引:1  
为了考察气固流化床干燥器能否使油页岩含水质量分数达到要求,以柳树河油页岩颗粒为原料,研究进口气体温度和颗粒直径对油页岩干燥性能的影响,采用薄层干燥模型,对油页岩干燥实验数据进行模拟,确定油页岩干燥方程和干燥速率方程,建立油页岩干燥速率特征常数和有效扩散系数之间的关联式。研究结果表明:薄层干燥模型中修正Page模型Ⅰ适合描述油页岩的干燥过程;油页岩在流化床内干燥过程主要发生在降速干燥阶段,进口气体温度越高,油页岩颗粒直径越小,所需干燥时间越短,进口气体温度为350℃时,使2.4 mm油页岩含水质量分数低于5%,所需干燥时间为2.5 min。  相似文献   

9.
碱式碳酸镁纳米花的干燥动力学研究   总被引:1,自引:1,他引:0  
以六水氯化镁和尿素为原料,采用均匀沉淀法制备出碱式碳酸镁纳米花。通过干燥动力学实验得到碱式碳酸镁纳米花的干燥曲线和干燥速率曲线。研究结果表明:在一定温度下碱式碳酸镁纳米花干燥速率曲线呈现明显的升速、恒速和降速三个干燥阶段;随着干燥介质温度的升高,干燥速率增大.干燥时间缩短。通过比较得出的干燥方程符合Page模型。  相似文献   

10.
为探讨纳米氧化镁颗粒在交叉缩放椭圆管内部的污垢规律,本文选用纳米氧化镁颗粒配置纯胶体溶液为研究对象,对不同颗粒直径、颗粒浓度、工质流速和温度工况下交叉缩放椭圆管的污垢特性进行了实验研究,并通过扫描电镜观察其结垢表面。结果表明:交叉缩放椭圆管纳米颗粒污垢下无明显诱导期;在相同的工况下,颗粒粒径越小,结垢速率越快,污垢热阻渐近值越大;随着颗粒浓度的增加,结垢速率加快,污垢热阻渐近值明显增大;随着流速的增加,污垢热阻渐近值和结垢速率都有所降低;污垢热阻渐近值随着实验管段入口温度的升高而降低。  相似文献   

11.
Soy sauce residue needs drying to avoid fermentation and oxidation during storage and transportation, and its reutilization as a useful resource is expected. Superheated steam drying was applied to investigate the effects of drying conditions on the drying characteristics and the content changes of salt and protein. The results showed that the inversion temperature was about 130°C, beyond which superheated steam drying was faster than hot air-drying. The drying time approaching equilibrium moisture content was reduced with elevated drying temperature as well as higher steam mass flow rate in the present experimental conditions. The effect of bed thickness on drying time was not obvious when drying temperature increased. Interestingly, the salt content of soy sauce residue could be decreased by 34.8% due to condensate water in the initial drying period (wetting), while protein content had no significant loss (p?相似文献   

12.
S. Pang 《Drying Technology》2013,31(2):651-670
ABSTRACT

A mathematical model for high-temperature drying of softwood lumber with moist air has been modified and extended to simulate wood drying with superheated steam. In the simulation, differences between the two types of drying are considered, these include: external heat and mass transfer processes and calculation of equilibrium moisture content. The external mass transfer coefficient in the perheated steam drying was found to be much higher than that in the moist air drying, however, the heat ransfer coefficients for these two cases were of the same order. The predicted drying curves and wood temperatures from the superheated steam drying model were compared with experimental data and there was close agreement. Further studies will apply the model to development of commercial drying schedules for wood drying with superheated steam.  相似文献   

13.
The drying kinetics of Chinese lignite in nitrogen fluidized-bed, superheated steam fluidized-bed and microwave were investigated. The changes in the mass as a function of drying time were measured under various drying conditions. The variations of moisture ratio with time were used to test ten different thin-layer empirical drying models given in the literature. In studying the consistency of all the models, some statistical tests, such as χ2, residual sum of squares (RSS) and F-value were also used as well as coefficient of determination R2. In nitrogen fluidized-bed and superheated steam fluidized-bed, the Midilli–Kucuk model best described the lignite drying process. Drying data in microwave were best described by the Page model, indicative of a difference in kinetics between the two drying methods. This difference was attributed to different heat transfer mechanisms under conventional and microwave drying conditions. The effects of drying parameters in nitrogen fluidized-bed, superheated steam fluidized-bed and microwave drying on the constants and coefficients of the selected models were studied by multiple regression analysis. The apparent diffusion coefficient of moisture in samples was obtained from the kinetics data and the apparent activation energies under nitrogen fluidized-bed, superheated steam fluidized-bed and microwave drying were found to be rather similar.  相似文献   

14.
In this paper a numerical simulation of a spray dryer using the computational fluid dynamics (CFD) code Fluent is described. This simulation is based on a discrete droplet model and solve the partial differential equations of momentum, heat and mass conservation for both gas and dispersed phase.

The model is used to simulate the behaviour of a pilot scale spray dryer operated with two drying media : superheated steam and air Considering that there is no risk of powder ignition in superheated steam, we choosed a rather high inlet temperature (973 K). For the simulation, drop size spectrum is represented by 6 discrete droplets diameters, fitting to an experimental droplets size distribution and all droplets are injected at the same velocity, equal to the calculated velocity of the liquid sheet at the nozzle orifice.

It is showed that the model can evaluate the most important features of a spray dryer : temperature distribution inside the chamber, velocity of gas, droplets trajectories as well as deposits on the walls. The model predicts a fast down flowing core jet surrounded by a large recirculation zone. Using superheated steam or air as a drying medium shows only slight differences in flow patterns. Except for the recirculation which is tighter in steam.

The general behaviour of droplets in air or steam are quite the same : smallest droplets are entrained by the central core and largest ones are taken into the recirculation zone. In superheated steam, the droplets penetrate to a greater extent in the recirculation zone. Also, they evaporate faster. The contours of gas temperature reflect these differences as these two aspects are strongly coupled. In both air and steam there is a “cool” zone which is narrower in steam than in air. Finally, the panicle deposit problem seems to be more pronounced in air than in steam.

Adding to the inherent interest in using superheated steam as a drying medium, the model predicts attractive behaviour for spray drying with superheated steam. In particular. under the conditions tested with the model, a higher volumetric drying rate is obtained in superheated steam.  相似文献   

15.
DRYING OF SLICED RAW POTATOES IN SUPERHEATED STEAM AND HOT AIR   总被引:2,自引:0,他引:2  
Drying experiments were conducted on raw potato slices, using atmospheric pressure superheated steam and hot air as drying media at 170 and 240°C. Mass changes of the material were continuously measured, the conditions of cross section near the surfaces were observed with an electron microscope, also color changes of their surface were measured during drying. The respective drying methods and temperature conditions were compared and it was found that, in the case of superheated steam drying, moisture content temporarily increases due to steam condensation in the initial stage of drying, therewith, as well as starch gelatinization rapidly develops. Meanwhile, in case of hot air drying, starch gelatinization occurs more slowly than with superheated steam drying and that non-gelatinized starch granules remain on the surface when drying was completed. Furthermore, surface color measurements showed that samples dried by superheated steam were more reddish than ones dried by hot air and the surfaces were more glossy, because no starch granules remain on the surface in case of superheated steam drying.  相似文献   

16.
《Drying Technology》2013,31(7):1411-1424
Drying experiments were conducted on raw potato slices, using atmospheric pressure superheated steam and hot air as drying media at 170 and 240°C. Mass changes of the material were continuously measured, the conditions of cross section near the surfaces were observed with an electron microscope, also color changes of their surface were measured during drying. The respective drying methods and temperature conditions were compared and it was found that, in the case of superheated steam drying, moisture content temporarily increases due to steam condensation in the initial stage of drying, therewith, as well as starch gelatinization rapidly develops. Meanwhile, in case of hot air drying, starch gelatinization occurs more slowly than with superheated steam drying and that non-gelatinized starch granules remain on the surface when drying was completed. Furthermore, surface color measurements showed that samples dried by superheated steam were more reddish than ones dried by hot air and the surfaces were more glossy, because no starch granules remain on the surface in case of superheated steam drying.  相似文献   

17.
S. Pang  M. Dakin 《Drying Technology》2013,31(6):1135-1147
Abstract

Two charges of green radiata pine sapwood lumber were dried, either using superheated steam under vacuum (90°C, 0.2 bar abs.) or conventionally using hot moist air (90/60°C). Due to low density of the drying medium under vacuum, the circulation velocity used was 10 m/s for superheated steam drying and 5.0 m/s for moist air drying, and in both cases, the flow was unidirectional. In drying, stack drying rate and wood temperatures were measured to examine the differences between the superheated steam drying and drying using hot moist air.

The experimental results have shown that the stack edge board in superheated steam drying dried faster than in the hot moist air drying. Once again due to the low density of the steam under vacuum, a prolonged maximum temperature drop across load (TDAL) was observed in the superheated steam drying, however, the whole stack dried slower and the final moisture content distribution was more variable than for conventional hot moist air drying. Wood temperatures in superheated steam drying were lower.  相似文献   

18.
ABSTRACT

Low-fat snack products are the driving forces for the drying of tortilla chips before frying. Super-heated steam impingement drying of foods has the advantage of improved energy efficiency and product quality. The temperature profile, drying curves, and the physical properties (shrinkage, crispiness, starch gelatinization and microstructure) of tortilla chips dried at different superheated steam temperatures and heat transfer coefficients were measured. Results indicated that the steam temperature had a greater effect on the drying curve than the heat transfer coefficient within the range of study. The microstructure of the samples after steam drying showed that higher steam temperature resulted in more pores and coarser appearance. The modulus of deformation and the shrinkage of tortilla chips correlated with moisture content. A higher steam temperature caused less shrinkage and a higher modulus of deformation. The pasting properties showed that samples dried under a higher steam temperature and a higher heat transfer coefficient gelatinized less during drying and had a higher ability to absorb water. Comparison of the superheated steam drying and air drying revealed that at elevated temperatures the superheated steam provided higher drying rates. Furthermore, there was a less starch gelatinization associated with air drying compared to superheated steam drying.  相似文献   

19.
ABSTRACT

In this paper a numerical simulation of a spray dryer using the computational fluid dynamics (CFD) code Fluent is described. This simulation is based on a discrete droplet model and solve the partial differential equations of momentum, heat and mass conservation for both gas and dispersed phase.

The model is used to simulate the behaviour of a pilot scale spray dryer operated with two drying media : superheated steam and air Considering that there is no risk of powder ignition in superheated steam, we choosed a rather high inlet temperature (973 K). For the simulation, drop size spectrum is represented by 6 discrete droplets diameters, fitting to an experimental droplets size distribution and all droplets are injected at the same velocity, equal to the calculated velocity of the liquid sheet at the nozzle orifice.

It is showed that the model can evaluate the most important features of a spray dryer : temperature distribution inside the chamber, velocity of gas, droplets trajectories as well as deposits on the walls. The model predicts a fast down flowing core jet surrounded by a large recirculation zone. Using superheated steam or air as a drying medium shows only slight differences in flow patterns. Except for the recirculation which is tighter in steam.

The general behaviour of droplets in air or steam are quite the same : smallest droplets are entrained by the central core and largest ones are taken into the recirculation zone. In superheated steam, the droplets penetrate to a greater extent in the recirculation zone. Also, they evaporate faster. The contours of gas temperature reflect these differences as these two aspects are strongly coupled. In both air and steam there is a “cool” zone which is narrower in steam than in air. Finally, the panicle deposit problem seems to be more pronounced in air than in steam.

Adding to the inherent interest in using superheated steam as a drying medium, the model predicts attractive behaviour for spray drying with superheated steam. In particular. under the conditions tested with the model, a higher volumetric drying rate is obtained in superheated steam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号