首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 6 毫秒
1.

Objective

To investigate the feasibility of magnetization transfer (MT) imaging in mice in vivo for the assessment of cortical bone.

Materials and methods

MT-zero echo time data were acquired at 4.7 T in six mice using MT preparation pulses with two different flip angles (FAs) and a series of ten different off-resonance frequencies (500–15000 Hz). Regions of interest were drawn at multiple levels of the femoral cortical bone. The MT ratio (MTR) was computed for each combination of FAs and off-resonance frequencies. T1 measurements were used to estimate the direct saturation (DS) using a Bloch equation simulation. Estimation of the absorption line width of cortical bone from T2* measurements was also performed.

Results

MTR values were higher using 3000° FA than 1000° FA. MTR values decreased toward higher off-resonance frequencies. Maximum mean MTR ± standard deviation (SD) of 58.57 ± 5.22 (range 50.44–70.61) was measured with a preparation pulse of 3000° and off-resonance frequency of 500 Hz. Maximum “true” MT effect was estimated at around 2–3 and 5 kHz, respectively, for 1000° and 3000° FA. Mean full width at half maximum ± SD of 577 ± 91 Hz was calculated for the absorption spectral line of the cortical bone.

Conclusion

MT imaging can be used for the assessment of cortical bone in mice in vivo. DS effects are negligible using preparation pulses with off-resonance frequencies greater than 3 kHz.
  相似文献   

2.

Objective

To provide a numerical and experimental investigation of the static RF shimming capabilities in the human brain at 9.4 T using a dual-row transmit array.

Materials and methods

A detailed numerical model of an existing 16-channel, inductively decoupled dual-row array was constructed using time-domain software together with circuit co-simulation. Experiments were conducted on a 9.4 T scanner. Investigation of RF shimming focused on B1 + homogeneity, efficiency and local specific absorption rate (SAR) when applied to large brain volumes and on a slice-by-slice basis.

Results

Numerical results were consistent with experiments regarding component values, S-parameters and B1 + pattern, though the B1 + field was about 25 % weaker in measurements than simulations. Global shim settings were able to prevent B1 + field voids across the entire brain but the capability to simultaneously reduce inhomogeneities was limited. On a slice-by-slice basis, B1 + standard deviations of below 10 % without field dropouts could be achieved in axial, sagittal and coronal orientations across the brain, even with phase-only shimming, but decreased B1 + efficiency and SAR limitations must be considered.

Conclusion

Dual-row transmit arrays facilitate flexible 3D RF management across the entire brain at 9.4 T in order to trade off B1 + homogeneity against power-efficiency and local SAR.  相似文献   

3.

Object

Our objective was to use 7 T MRI to compare cartilage morphology (thickness) and collagen composition (T2 values) in cartilage repair patients and healthy controls.

Materials and methods

We scanned the knees of 11 cartilage repair patients and 11 controls on a 7 T MRI scanner using a high-resolution, gradient-echo sequence to measure cartilage thickness and a multi-echo spin-echo sequence to measure cartilage T2 values. We used two-tailed t tests to compare cartilage thickness and T2 values in: repair tissue (RT) versus adjacent cartilage (AC); RT versus healthy control cartilage (HC); AC versus HC.

Results

Mean thickness in RT, AC, HC were: 2.2 ± 1.4, 3.6 ± 1.1, 3.3 ± 0.7 mm. Differences in thickness between RT–AC (p = 0.01) and RT–HC (p = 0.02) were significant, but not AC–HC (p = 0.45). Mean T2 values in RT, AC, HC were: 51.6 ± 7.6, 40.0 ± 4.7, 45.9 ± 3.7 ms. Differences in T2 values between RT–AC (p = 0.0005), RT-HC (p = 0.04), and AC–HC (p = 0.004) were significant.

Conclusion

7 T MRI allows detection of differences in morphology and collagen architecture in: (1) cartilage repair tissue compared to adjacent cartilage and (2) cartilage repair tissue compared to cartilage from healthy controls. Although cartilage adjacent to repair tissue may be normal in thickness, it can demonstrate altered collagen composition.  相似文献   

4.

Object

Diffusion weighted imaging (DWI) of the liver suffers from low signal to noise making 3 Tesla (3 T) an attractive option, but 3 T data is scarce. It was the aim to study the influence of different b values and respiratory compensation methods (RCM) on the apparent diffusion coefficient (ADC) level and on ADC reproducibility at 3 T.

Materials and methods

Ten healthy volunteers and 12 patients with malignant liver lesions underwent repeated (2–22 days) breathhold, free-breathing and respiratory triggered DWI at 3 T using b values between 0 and 1,000 s/mm2.

Results

The ADCs changed up to 150 % in healthy livers and up to 48 % in malignant lesions depending on b value combinations. Best ADC reproducibility in healthy livers were obtained with respiratory triggering (95 % limits of agreement: ±0.12) and free-breathing (±0.14). In malignant lesions equivalent reproducibility was obtained with less RCM dependence. The use of a lower maximum b value (b = 500) decreased reproducibility (±0.14 to ±0.32) in both normal liver and malignant lesions.

Conclusion

Large differences in absolute ADC values and reproducibility caused by varying combinations of clinically realistic b values were demonstrated. Different RCMs caused smaller differences. Lowering maximum b value to 500 increased limits of agreement up to a factor of two. Serial ADC changes larger than approximately 15 % can be detected confidently on an individual basis in both malignant lesions and normal liver parenchyma at 3 T using appropriate b values and respiratory compensation.  相似文献   

5.
6.
7.

Objective

Signal drop-off occurs in echo-planar imaging in inferior brain areas due to field gradients from susceptibility differences between air and tissue. Tailored-RF pulses based on a hyperbolic secant (HS) have been shown to partially recover signal at 3 T, but have not been tested at higher fields.

Materials and methods

The aim of this study was to compare the performance of an optimized tailored-RF gradient-echo echo-planar imaging (TRF GRE-EPI) sequence with standard GRE-EPI at 7 T, in a passive viewing of faces or objects fMRI paradigm in healthy subjects.

Results

Increased temporal-SNR (tSNR) was observed in the middle and inferior temporal lobes and orbitofrontal cortex of all subjects scanned, but elsewhere tSNR decreased relative to the standard acquisition. In the TRF GRE-EPI, increased functional signal was observed in the fusiform, lateral occipital cortex, and occipital pole, regions known to be part of the visual pathway involved in face-object perception.

Conclusion

This work highlights the potential of TRF approaches at 7 T. Paired with a reversed-gradient distortion correction to compensate for in-plane susceptibility gradients, it provides an improved acquisition strategy for future neurocognitive studies at ultra-high field imaging in areas suffering from static magnetic field inhomogeneities.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号