To demonstrate the advantages of radial k-space trajectories over conventional Cartesian approaches for accelerating the acquisition of vessel-selective arterial spin labeling (ASL) dynamic angiograms, which are conventionally time consuming to acquire.
Materials and methodsVessel-encoded pseudocontinuous ASL was combined with time-resolved balanced steady-state free precession (bSSFP) and spoiled gradient echo (SPGR) readouts to obtain dynamic vessel-selective angiograms arising from the four main brain-feeding arteries. Dynamic 2D protocols with acquisition times of one minute or less were achieved through radial undersampling or a Cartesian parallel imaging approach. For whole-brain dynamic 3D imaging, magnetic field inhomogeneity and the high acceleration factors required rule out the use of bSSFP and Cartesian trajectories, so the feasibility of acquiring 3D radial SPGR angiograms was tested.
ResultsThe improved SNR efficiency of bSSFP over SPGR was confirmed for 2D dynamic imaging. Radial trajectories had considerable advantages over a Cartesian approach, including a factor of two improvements in the measured SNR (p < 0.00001, N = 6), improved distal vessel delineation and the lack of a need for calibration data. The 3D radial approach produced good quality angiograms with negligible artifacts despite the high acceleration factor (R = 13).
ConclusionRadial trajectories outperform conventional Cartesian techniques for accelerated vessel-selective ASL dynamic angiography.
相似文献Objective
To compare arterial transit time estimates from two efficient transit time mapping techniques using arterial spin labeling (ASL)—flow encoded arterial spin tagging (FEAST) and Look-Locker ASL (LL-ASL). The effects of bipolar gradients and label location were investigated. 相似文献Object
The objective of this study was to investigate effects of varying readout bandwidths on the arterial spin labeling (ASL)-perfusion MRI measurements at a high magnetic field MRI system. 相似文献Objectives
Acceleration selective arterial spin labeling (AccASL) is a spatially non-selective labeling technique, used in traditional ASL methods, which labels spins based on their flow acceleration rather than spatial localization. The exact origin of the AccASL signal within the vasculature is not completely understood. To obtain more insight into this, the acceleration selective module was performed followed by a velocity selective module, which is used in velocity selective arterial spin labeling (VS-ASL).Materials and methods
Nine healthy volunteers were scanned with various combinations of the control and label conditions in both the acceleration and velocity selective module. The cut-off acceleration (0.59 m/s2) or velocity (2 cm/s) was kept constant in one module, while it was varied over a large range in the other module. With the right subtractions this resulted in AccASL, VS-ASL, combined AccASL and VS-ASL signal, and signal from one module with crushing from the other.Results
The label created with AccASL has an overlap of approximately 50% in the vascular region with VS-ASL, but also originates from smaller vessels closer to the capillaries.Conclusion
AccASL is able to label spins both in the macro- and meso-vasculature, as well as in the microvasculature.Objective
Echo-planar imaging (EPI) with CYlindrical Center-out spatiaL Encoding (EPICYCLE) is introduced as a novel hybrid three-dimensional (3D) EPI technique. Its suitability for the tracking of a short bolus created by pseudo-continuous arterial spin labeling (pCASL) through the cerebral vasculature is demonstrated.Materials and methods
EPICYCLE acquires two-dimensional planes of k-space along center-out trajectories. These “spokes” are rotated from shot to shot about a common axis to encode a k-space cylinder. To track a bolus of labeled blood, the same subset of evenly distributed spokes is acquired in a cine fashion after a short period of pCASL. This process is repeated for all subsets to fill the whole 3D k-space of each time frame.Results
The passage of short pCASL boluses through the vasculature of a 3D imaging slab was successfully imaged using EPICYCLE. By choosing suitable sequence parameters, the impact of slab excitation on the bolus shape could be minimized. Parametric maps of signal amplitude, transit time, and bolus width reflected typical features of blood transport in large vessels.Conclusion
The EPICYCLE technique was successfully applied to track a short bolus of labeled arterial blood during its passage through the cerebral vasculature.Object
The goal of this work is to use vessel encoded arterial spin labeling (VEASL) methods to detect feeding arteries without prior knowledge of their positions, and map the vascular territory of each. 相似文献Object
To present an algorithm for optimization of background suppression pulse timing for arterial spin labeling (ASL) perfusion imaging. 相似文献Objective
Partial volume (PV) correction is an important step in arterial spin labeling (ASL) MRI that is used to separate perfusion from structural effects when computing the mean gray matter (GM) perfusion. There are three main methods for performing this correction: (1) GM-threshold, which includes only voxels with GM volume above a preset threshold; (2) GM-weighted, which uses voxel-wise GM contribution combined with thresholding; and (3) PVC, which applies a spatial linear regression algorithm to estimate the flow contribution of each tissue at a given voxel. In all cases, GM volume is obtained using PV maps extracted from the segmentation of the T1-weighted (T1w) image. As such, PV maps contain errors due to the difference in readout type and spatial resolution between ASL and T1w images. Here, we estimated these errors and evaluated their effect on the performance of each PV correction method in computing GM cerebral blood flow (CBF).Materials and methods
Twenty-two volunteers underwent scanning using 2D echo planar imaging (EPI) and 3D spiral ASL. For each PV correction method, GM CBF was computed using PV maps simulated to contain estimated errors due to spatial resolution mismatch and geometric distortions which are caused by the mismatch in readout between ASL and T1w images. Results were analyzed to assess the effect of each error on the estimation of GM CBF from ASL data.Results
Geometric distortion had the largest effect on the 2D EPI data, whereas the 3D spiral was most affected by the resolution mismatch. The PVC method outperformed the GM-threshold even in the presence of combined errors from resolution mismatch and geometric distortions. The quantitative advantage of PVC was 16% without and 10% with the combined errors for both 2D and 3D ASL. Consistent with theoretical expectations, for error-free PV maps, the PVC method extracted the true GM CBF. In contrast, GM-weighted overestimated GM CBF by 5%, while GM-threshold underestimated it by 16%. The presence of PV map errors decreased the calculated GM CBF for all methods.Conclusion
The quality of PV maps presents no argument for the preferential use of the GM-threshold method over PVC in the clinical application of ASL.Purpose
To investigate a wavelet-based filtering scheme for denoising of arterial spin labeling (ASL) data, potentially enabling reduction of the required number of averages and the acquisition time. 相似文献Object
Arterial spin labelling (ASL) can be used to measure renal perfusion non-invasively. The aim of this study was to determine the repeatability of this technique in healthy kidneys to vindicate its use in clinic. 相似文献Objective
To accelerate super-selective arterial spin labeling (ASL) angiography by using a single control condition denoted as cycled super-selective arterial spin labeling.Materials and methods
A single non-selective control image is acquired that is shared by selective label images. Artery-selective imaging is possible by geometrically changing the position of the labeling focus to more than one artery of interest during measurement. The presented approach is compared to conventional super-selective imaging in terms of its labeling efficiency inside and outside the labeling focus using numerical simulations and in vivo measurements. Additionally, the signal-to-noise ratios of the images are compared to non-selective ASL angiography and analyzed using a two-way ANOVA test and calculating the Pearson’s correlation coefficients.Results
The results indicate that the labeling efficiency is not reduced within the labeled artery, but can increase as a function of distance to the artery of interest when compared to conventional super-selective ASL. In the final images, no statistically significant difference of image quality can be observed while the acquisition duration could be reduced when the major brain feeding arteries are being tagged.Conclusion
Using super-selective arterial spin labeling, a single non-selective control acquisition suffices for reconstructing selective angiograms of the cerebral vasculature, thereby accelerating image acquisition of the major intracranial arteries without notable loss of information.To investigate the effect of inter-operator variability in arterial input function (AIF) definition on kinetic parameter estimates (KPEs) from dynamic contrast-enhanced (DCE) MRI in patients with high-grade gliomas.
MethodsThe study included 118 DCE series from 23 patients. AIFs were measured by three domain experts (DEs), and a population AIF (pop-AIF) was constructed from the measured AIFs. The DE-AIFs, pop-AIF and AUC-normalized DE-AIFs were used for pharmacokinetic analysis with the extended Tofts model. AIF-dependence of KPEs was assessed by intraclass correlation coefficient (ICC) analysis, and the impact on relative longitudinal change in Ktrans was assessed by Fleiss’ kappa (κ).
ResultsThere was a moderate to substantial agreement (ICC 0.51–0.76) between KPEs when using DE-AIFs, while AUC-normalized AIFs yielded ICC 0.77–0.95 for Ktrans, kep and ve and ICC 0.70 for vp. Inclusion of the pop-AIF did not reduce agreement. Agreement in relative longitudinal change in Ktrans was moderate (κ = 0.591) using DE-AIFs, while AUC-normalized AIFs gave substantial (κ = 0.809) agreement.
DiscussionAUC-normalized AIFs can reduce the variation in kinetic parameter results originating from operator input. The pop-AIF presented in this work may be applied in absence of a satisfactory measurement.
相似文献Object
To assess lung perfusion in young patients with cystic fibrosis (CF) using an arterial spin labeling (ASL) technique. 相似文献Evaluating the impact of the Inversion Time (TI) on regional perfusion estimation in a pediatric cohort using Arterial Spin Labeling (ASL).
Materials and methodsPulsed ASL (PASL) was acquired at 3 T both at TI 1500 ms and 2020 ms from twelve MRI-negative patients (age range 9–17 years). A volume of interest (VOIs) and a voxel-wise approach were employed to evaluate subject-specific TI-dependent Cerebral Blood Flow (CBF) differences, and grey matter CBF Z-score differences. A visual evaluation was also performed.
ResultsCBF was higher for TI 1500 ms in the proximal territories of the arteries (PTAs) (e.g. insular cortex and basal ganglia — P < 0.01 and P < 0.05 from the VOI analysis, respectively), and for TI 2020 ms in the distal territories of the arteries (DTAs), including the watershed areas (e.g. posterior parietal and occipital cortex — P < 0.001 and P < 0.01 from the VOI analysis, respectively). Similar differences were also evident when analyzing patient-specific CBF Z-scores and at a visual inspection.
ConclusionsTI influences ASL perfusion estimates with a region-dependent effect. The presence of intraluminal arterial signal in PTAs and the longer arterial transit time in the DTAs (including watershed areas) may account for the TI-dependent differences. Watershed areas exhibiting a lower perfusion signal at short TIs (~ 1500 ms) should not be misinterpreted as focal hypoperfused areas.
相似文献