首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrologic model calibration is always a challenging and tedious process especially for the calibration of complex models, which includes continuous hydrograph models, requires sophisticated calibration methods. The Hydrologic Simulation Program-FORTRAN (HSPF) is one of the popular and powerful time variable hydrologic models. However, in order to improve the assessment of hydrologic activities in shallow ground water settings, the model needs to be reliably calibrated for ground water contribution. Little guidance is provided in the literature concerning the manner of this contribution. In fact, the most common calibration of HSPF uses subjective parameter fitting and focuses on the attainment of statistical goodness of fit of runoff fluxes and water levels, ignoring ground water components. The goal of this research is using a different approach to calibrate HSPF with observed water table records. In this study, HSPF is applied on a small area in west-central Florida and calibrated by comparing active ground water storage to well elevation records in range land and forested land covers. The Nash-Sutcliffe efficiency and correlation coefficient computed using observed and simulated daily flows are 0.91 and 0.96 at Peace River, respectively, also with good fair results for other stations in the model domain. The study shows that improved calibration of the model can be achieved if active ground water storage and well records are compared for timing and magnitude of fluctuations.  相似文献   

2.
Efficient use of natural water resources in agriculture is becoming an important issue in Florida because of the rapid depletion of freshwater resources due to the increasing trend of industrial development and population. Reliable and consistent estimates of evapotranspiration (ET) are a key element of managing water resources efficiently. Since the 1940s numerous grass- and alfalfa-reference evapotranspiration (ETo and ETr, respectively) equations have been developed and used by researchers and decision makers, resulting in confusion as to which equation to select as the most accurate reference ET estimates. Twenty-one ETo and ETr methods were evaluated based on their daily performance in a humid climate. The Food and Agriculture Organization Penman-Monteith (FAO56-PM) equation was used as the basis for comparison for the other methods. Measured and carefully screened daily climate data during a 23-year period (1978–2000) were used for method performance analyses, in which the methods were ranked based on the standard error of estimate (SEE) on a daily basis. In addition, the performance of the four alfalfa-based ET (ETr) equations and the ratio of alfalfa ET to grass ET (Kr values) were evaluated, which have not been studied before in Florida’s humid climatic conditions. The peak month ETo estimates by each method were also evaluated. All methods produced significantly different ETo estimates than the FAO56-PM method. The 1948 Penman method estimates were closest to the FAO56-PM method on a daily basis throughout the year, with the daily SEE averaging 0.11 mm?d?1; thus this method was ranked the second best overall. Although 1963 Penman (with the original wind function) slightly overestimated ET, especially at high ETo rates, it provided remarkably good estimates as well and ranked as the third best method, with a daily average SEE value of 0.14 mm?d?1. Both methods produced peak month ETo estimates closest to the FAO56-PM method among all methods evaluated, with daily peak month SEEs averaging 0.07 and 0.09 mm?d?1, respectively. Significant variations were observed in terms of the performance of the various forms of Penman’s equations. For example, the original Penman-Monteith method produced the poorest ETo estimates among the combination equations, with a daily SEE for all months and peak month averaging 0.50 and 0.35 mm?d?1, respectively and ranked 11th. An average value of 1.18 was used to convert ETr estimates to ETo values for alfalfa-reference methods. The Kr value of 1.18 resulted in reasonable estimates of ETo throughout the year by the Kimberley forms of the Penman equations. Another ETr-based equation, Jensen-Haise, gave consistently poor estimates. The Stephens-Stewart radiation method was the highest-ranked (10th) noncombination method overall. The temperature-based McCloud method (ranked 19th) produced the poorest ETo estimates among all methods with a daily SEE for all months and for the peak month averaging 1.93 and 1.22 mm?d?1, respectively. In general, the results obtained from the temperature methods suggest that all of the temperature methods, with the possible exception of the Turc method, can only be applicable for these climatic conditions after they are calibrated or modified locally or regionally. The FAO and Christiansen pan evaporation methods (ranked 17th and 18th, respectively) produced poor ETo estimates and had the largest amount of point scatter in daily ETo estimates relative to the FAO56-PM ETo. Both methods resulted in the highest daily SEE of 1.18 and 1.19 mm?d?1 for all months, after the McCloud method (1.93 mm?d?1), and with the highest SEE of 1.30 and 1.24 mm?d?1 for the peak month of all methods evaluated. The FAO56-PM method uses solar radiation, wind speed, relative humidity, and minimum and maximum air temperature to estimate ETo. It has been recommended that the FAO56-PM be used for estimating ETo when all the necessary input parameters are available. However, all these input variables may not be available, or some of them may not be reliable for a given location if the FAO56-PM equation is used, and one may need to choose other temperature, radiation, or pan evaporation methods based on the availability of data for estimating ETo. The results of this study can be used as a reference tool to provide practical information on which method to select based on the availability of data for reliable and consistent estimates of daily ETo relative to the FAO56-PM method in a humid climate.  相似文献   

3.
The SIMGRO hydrologic simulation model was extended to include irrigation practice. It could then be used to evaluate the effect of hydrologic changes in an irrigated area in the province of Mendoza, Argentina where, given an average annual rainfall of approximately 200?mm, irrigation is crucial for agriculture. A storage dam was recently constructed in the Mendoza River to control the fluctuating river flow and to guarantee that the demand for water is met throughout the year. The dam will impact on parts of the irrigation system where groundwater levels are already high and salinization occurs. To evaluate these changes and possible mitigation measures, two performance indicators that consider groundwater and surface water were used: Relative evapotranspiration and the depleted fraction. Scenario runs revealed that the irrigation water losses from the canals affect the groundwater levels in the downstream part of the irrigated area; an increase in salinity was also revealed.  相似文献   

4.
Hydrologic models play an important role in the assessment of nonpoint source (NPS) pollution, which is essential for the environmental management of water resources. The present study has been undertaken to evaluate the applicability of a physically based continuous time scale, hydrological, and water quality computer model—Hydrologic Simulation Program-Fortran (HSPF)—in simulating runoff and sediment associated NPS pollutant losses from a small mixed type (land under agriculture, shrubs and forest, rocks, grasses) watershed of the Damodar Valley Corporation, Hazaribagh, India. Water soluble NO3–N, NH4–N, and P were considered as pollutants and their concentrations in the runoff were measured at the outlet of the watershed, randomly for 15 dates during the monsoon season (June–October) of 2000 and 2001. The model calibration and validation results reveal that the seasonal trend of HSPF simulated runoff, sediment yield, and NPS pollutants compared reasonably with their measured counterparts. Although the concentrations of pollutants were generally overpredicted for NO3–N and underpredicted for NH4–N and water-soluble P in the month of June when fertilizers releasing NH4–N and P are applied in rice fields, the differences in the mean concentration were not significantly different at a 95% level of confidence. Variation in the simulated losses of water soluble N and P species between the years occurred largely due to differences in the amount and distribution of rainfall. These results indicate that the HSPF model can be used as a tool for simulating runoff and sediment associated NPS pollution losses from the study area.  相似文献   

5.
Vertical slot fishways are hydraulic structures which allow the upstream migration of fish through obstructions in rivers. The velocity, water depth, and turbulence fields are of great importance in order to allow the fish swimming through the fishway, and therefore must be considered for design purposes. The aim of this paper is to assess the possibility of using a two-dimensional shallow water model coupled with a suitable turbulence model to compute the flow pattern and turbulence field in vertical slot fishways. Three depth-averaged turbulence models of different complexity are used in the numerical simulations: a mixing length model, a k?ε model, and an algebraic stress model. The numerical results for the velocity, water depth, turbulent kinetic energy, and Reynolds stresses are compared with comprehensive experimental data for three different discharges covering the usual working conditions of vertical slot fishways. The agreement between experimental and numerical data is very satisfactory. The results show the importance of the turbulence model in the numerical simulations, and can be considered as a useful complementary tool for practical design purposes.  相似文献   

6.
The particular challenges of modeling controlled water systems are discussed. The high degree of freedom due to the control structures increases the risk of producing the right output for the wrong reasons. On the other hand, many controlled water systems are (partly) manually operated or at least supervised by an operational water manager. The decisions of these managers are not as rigid as a computer simulated control strategy. Therefore, getting a very close fit with a water-system control model is mostly not possible. A modeling framework is proposed that takes advantage of the vast availability of measurement data in controlled water systems. The water level and flow data at control structures allow for intensive validation and subsystem calibration to reduce the degree of modeling freedom and to model separately the natural rainfall-runoff and hydrodynamic processes. The framework is successfully applied to improve a simulation model of the controlled water system of Rijnland, The Netherlands. The yearly volume error was reduced from 11% to less than 1% and as a consequence, the short-term peak events were modeled more accurately as well. The resulting water-system control model is more reliable for both design studies and operational decision support. The framework will contribute to prepare more reliable simulation models of controlled water systems.  相似文献   

7.
An important issue that integrated hydrologic models (IHMs) for river basins can address is the management of water resources in heavily inhabited and cultivated basins. To address this issue, these models need to simulate water demands and root zone flows in a basin. Irrigation scheduling models (ISMs) have been widely used by professionals to compute farm level water demands and root zone flows. Available ISMs are neither suitable for use at basin scale nor can they be easily linked to IHMs. This paper describes a new model that utilizes methods used by ISMs to compute root zone flows and water demands in river basins and can be linked to IHMs. The model was applied to a basin in California, and the simulated water demands were compared with data compiled for the basin. The differences in the results were attributed to differences in input potential evapotranspiration rates. The paper demonstrates that simulated water demands for rice are very sensitive to saturated soil hydraulic conductivity, whereas demands for other crops are sensitive to the pore size distribution index.  相似文献   

8.
Buoyant Surface Discharges into Water Bodies. II: Jet Integral Model   总被引:1,自引:0,他引:1  
The near-field region of a buoyant surface discharge into water bodies often displays significant jet-like motions in form of free jets, shoreline-attached jets, and wall jets, respectively, as classified by the CORMIX3 expert system [see Jones et al., (2007, Paper I)]. A new jet integral model CorSurf has been developed that addresses in a single formulation this entire spectrum of jet motions in both deep or shallow environments. The model employs an entrainment closure approach for the separate contributions of entrainment resulting from transverse shear, buoyant damping, advected puff motions, frontal mixing, and interfacial mixing due to lateral spreading. It also contains a quadratic law turbulent drag force mechanism. An alternative model formulation applies to the two-dimensional bottom-attached form of the jet. This formulation contains a deflecting pressure force mechanism as well as the bottom shear force. Specific criteria describe bottom attachment and detachment processes. Finally, a number of confinement effects on the jet dynamics due to shallow water and/or lateral boundaries are included. The model has been validated under a wide range of geometric and dynamic conditions using, in particular, hitherto unavailable high-resolution laboratory data.  相似文献   

9.
This paper presents and discusses an extension of the pseudotransient continuation-based steady state solver for hydraulic networks proposed previously to the case of zero flow rates. The original solver, which reduces the solution of the governing nonlinear algebraic equations to the numerical integration of an initial-value problem, has problems in situations in which the head derivative of the flow rate tends to infinity, as is the case with zero flow rates. The extension is on the basis of the use of a model headloss-flow relationship that coincides with the true one at zero and has a finite head derivative at that point. This modified steady state solver is free from some convergence problems that occur in Newton-Raphson method-based solvers when analyzing a pipe network with control devices. The paper includes the results of the numerical analysis of test networks, which demonstrate the convergence of the modified steady state solver for cases in which existing steady state solvers have troubles.  相似文献   

10.
This paper describes efforts toward developing a reliable numerical model to predict pump intake flow and associated vortices. Numerical prediction of these flows characterized by the formation of unsteady (meandering) intermittent vortices and presence of massive separation is very challenging. Successful prediction of these phenomena and their effects on the mean flow fields requires numerical methods and turbulence models that can accurately capture the dynamics of the main coherent structures in these flows. In the present work, large-eddy simulation (LES) in conjunction with an accurate nondissipative nonhydrostatic Navier-Stokes massively parallel solver is used to predict the flow and vortical structures in a pressurized pump intake of complex geometry. The LES model is validated using particle image velocimetry data recently collected on a laboratory model of a realistic geometry pump intake. To better put in perspective the predictive performance of the LES model, results from steady simulations employing the shear stress transport (SST) Reynolds-averaged-Navier-Stokes (RANS) model are presented and compared with LES. It is shown that even if SST can fairly successfully capture the mean velocity distribution and mean vortical structures in some regions, overall LES can more accurately predict the mean flow and turbulence statistics compared to the steady SST model.  相似文献   

11.
Modifications to SCS-CN Method for Long-Term Hydrologic Simulation   总被引:4,自引:0,他引:4  
The original soil conservation service curve number (SCS-CN) technique is primarily used to transform daily rainfall into surface runoff by assuming the proportionality between retention and surface runoff based on a parameter referred to as curve number (CN). The conventional method does not take into account the temporal and spatial variability of curve number. In this paper, an attempt has been made to modify the existing SCS-CN model in two ways by varying the CN using antecedent moisture condition (designated as Model I), and by using antecedent moisture amount (designated as Model II). The daily moisture storage is updated based on varying the curve number and other hydrologic abstractions. These two different models are constructed to compute streamflow components: Direct surface runoff, base flow, and hydrological abstractions. These methodologies were successfully applied to daily data of catchments of Cauvery, Narmada, Ganga, and Ulhas Rivers, lying in different climatic regions of India, and the results were analyzed. Application of Model I to Hemavati (a tributary of River Cauvery, Karnataka State) data yielded maximum efficiency of 84% in calibration, and minimum efficiency of 54% with Ramganga (a tributary of River Ganga, Uttaranchal State) data, whereas Model II showed maximum efficiency of 85% in Hemavati catchment and minimum efficiency of 64% in Kalu catchment (a tributary of River Ulhas, Maharashtra State). Model II performed better than Model I on all four catchments. It is found that the proposed models reasonably simulate the catchment response and these SCS-CN-based models are applicable to complex natured watersheds.  相似文献   

12.
In a companion paper, development of an integrated reservoir-based canal irrigation model (IRCIM) was described. This developed model combines catchment hydrological modeling, reservoir water balance, command hydrological modeling, and a simple canal hydraulic simulation through a rotational irrigation management system, and simulates the whole system as a single unit to ensure equitable distribution of supply to meet the demand if possible, or, to minimize the gap between the supply and demand. In this paper, the developed model was applied to Kangsabati Irrigation Project, West Bengal, India, as a case study. Results showed that IRCIM successfully simulated the operation of the test reservoir after proper calibration and was able to determine better delivery schedules than that actually practiced. The best delivery schedule determined by IRCIM improved the performance of the test irrigation project considerably over the actual delivery schedule for most of the simulation years. Based on these yearly results, a year-independent alternative delivery schedule was also proposed which could be followed mechanically without a manager’s expertise or experience on the particular irrigation project. It was also shown that IRCIM could be used successfully both modulewise or in an integrated way depending on the requirement of the irrigation manager for efficient operation of any reservoir-based canal irrigation systems either for preseason planning of allocation schedules based on hydrologic and hydraulic simulations or for postseason evaluation of the system performance.  相似文献   

13.
The success of irrigation system operation and planning depends on the quantification of supply and demand and equitable distribution of supply to meet the demand if possible, or to minimize the gap between the supply and demand. Most of the irrigation literature mainly focuses on the demand and distribution aspects only. In addition, irrigation projects that receive water from a reservoir can be challenging to manage as annual fluctuations in runoff from the reservoir’s catchment can have considerable impact on the irrigation management strategy. This study focuses on the development of an integrated reservoir-based canal irrigation model (IRCIM) that includes catchment hydrologic modeling, reservoir water balance, command hydrologic modeling, and a rotational canal irrigation management system. The front end of the IRCIM is developed in Visual Basic 6.0, whereas the back-end coding is done in C language. The graphical user interface is the most important feature of the model, as it provides a better interaction between the model and its user. The IRCIM has a modular structure that consists of three modules, viz., catchment module, reservoir module, and crop water demand module. The catchment module predicts daily runoff from the catchment that inflows to the reservoir. Depending on the data availability, this module is provided with the flexibility of choosing between the Soil Conservation Service’s curve number method combined with the Muskingum routing technique, and an artificial neural network technique using the Levenberg–Marquardt algorithm. The reservoir module is based on conservation of mass approach, and results in daily reservoir storage. The crop water demand module is comprised of water-balance models for both paddy and field crops. The irrigation management system serves as the program flow controller for the model and runs the required module when needed. For postseason evaluation of the irrigation system, performance indicators such as adequacy, efficiency, equity, and dependability are used. In a companion paper, the model is applied for Kangsabati Irrigation Project, West Bengal, India.  相似文献   

14.
Trade-offs between precision of numerical solutions to deterministic models of the environment, and the number of model realizations achievable within a framework of Monte Carlo simulation, are investigated and discussed. A case study of a model of river thermodynamics is employed. It is shown that the tractability of Monte Carlo simulation relies on adaptation of the numerical solution time-step, giving results with a guaranteed error in the time domain as well as near-optimum speed of calibration under any chosen accuracy criteria. Time-step control is implemented using two adaptive Runge–Kutta methods: a second order scheme with first order error estimator, and an embedded fourth-fifth order scheme. In the case study, where the effects of sparse and imprecise data dominate the overall modeling error, both the schemes appear adequate. However, the higher order scheme is concluded to be generally more reliable and efficient, and has wide potential to improve the value of applying the Monte Carlo method to environmental simulation. The problem of reconciling spatial error with the specified temporal error is discussed.  相似文献   

15.
Gated spillways are used to control flow in canals, rivers, and estuaries. Despite their widespread use, available flow ratings at these gated structures are largely derived from reduced-scale laboratory models. In this paper, generalized flow rating equations are developed based on field flow measurements collected mostly with an Acoustic Doppler Current Profiler at about 90 prototype gated spillways in South Florida. The proposed ratings, developed using dimensional analysis, agree well with field measurements. A single generalized equation that is applicable to all flow conditions was also developed. This generalized equation addresses the limitation of continuity of the calculations as flow transitions from one condition to another.  相似文献   

16.
Process Modeling of Storm-Water Flow in a Bioretention Cell   总被引:1,自引:0,他引:1  
A two-dimensional variable saturated flow model was developed to simulate subsurface flow in bioretention facilities employing the Richards’ equation. Variable hydrologic performances of bioretention are evaluated using the underdrain outflow hydrographs, outflow volumes for 10 storms with various duration and depth, and flow duration curves for 25 different storms. The effects of some important design parameters and elements are tested, including media type, surrounding soils, initial water content, ratio of drainage area to bioretention surface area, and ratio of cell length to width. Model results indicate that the outflow volume via underdrain is less than the inflow; the flow peak is significantly reduced and delayed. Underdrain outflow volume from loamy sand media (with larger Ks) is larger than that from sandy clay loam media. The saturated hydraulic conductivity, storage capacity, and exfiltration into surrounding soils contribute to the hydrologic performance of a bioretention cell. Initial media storage capacity is affected by the hydraulic properties of media soils, initial water content, and bioretention surface area. The exfiltration volume is determined by the surrounding soil type and exfiltration area, dominated by flow through the bottom of the media.  相似文献   

17.
A steady, two-dimensional numerical model was created to study the hydrodynamics of a rectangular sedimentation basin under turbulent conditions. The strip integral method was used to formulate the flow equations, using a forward marching scheme for solving the governing partial differential equations of continuity, momentum, advection–diffusion, turbulent kinetic energy, and its dissipation. In this way the flow equations were converted to a set of ordinary differential equations (ODEs) in terms of the key physical parameters. These parameters, along with a set of shape functions, describe flow variables including the velocity, the concentration of suspended sediments, and both the kinetic energy and its dissipation rate. Four Gaussian distributions were investigated, one corresponding to each flow parameter. In order to calculate the turbulent shear stresses, a two-equation turbulence model (i.e., k-ε model) was used. A fourth order Runge–Kutta method numerically integrates the set of ODEs. Simulation results were compared with experimental data, and close agreement (generally within 5–10%) was observed.  相似文献   

18.
Case Study: Flood Mitigation of the Muda River, Malaysia   总被引:1,自引:0,他引:1  
The 2003 flood of the Muda River reached 1,340?m3/s at Ladang Victoria and adversely impacted 45,000 people in Malaysia. A flood control remediation plan proposed a levee height based on a 50-year discharge of 1,815?m3/s obtained from hydrologic models. This design discharge falls outside the 95% confidence intervals of the flood frequency analysis based on field measurements. Instream sand and gravel mining operations also caused excessive riverbed degradation, which largely off sets apparent benefits for flood control. Pumping stations have been systematically required at irrigation canal intakes. Several bridge piers have also been severely undermined and emergency abutment protection works were needed in several places. Instream sand and gravel mining activities should be replaced with offstream mining in the future.  相似文献   

19.
The semiarid climate of the majority of agricultural districts in the Mediterranean means that water is a key factor limiting production. It is therefore necessary to distribute water in the most efficient way possible and foment the sustainable use of this valuable resource. It is a difficult task to ascertain whether the use of water in an irrigation district is efficient or not, given that water as a resource cannot be considered in an isolated manner. The development of techniques for data envelopment analysis (DEA) has made it possible to evaluate, in a global manner, where the application of water is most efficient. DEA techniques consider the production process as a set of inputs which obtain a set of outputs in the form of profits. The study of efficiency as a combination of resources allows us to assess when the application of water will lead to greater profitability and hence aid water management authorities in distributing the water of their basins in an appropriate manner. In this study, the data envelopment analysis Baker, Charnes, and Cooper model is applied to all of the irrigation districts in Andalusia (Southern Spain). Using the Wilcoxon–Mann–Withney statistical test we conclude that extensive agriculture (located in the interior) and intensive agriculture (on the littoral) are difficult to compare. Although intensive agriculture with localized irrigation systems achieves the highest efficiency values, the spatial distribution of efficiencies is of great utility in detecting local inefficiencies. It is also useful in providing general guidelines as to which trends should be followed in order to obtain the greatest possible efficiency.  相似文献   

20.
Often, the initiation of a total maximum daily load (TMDL) program is delayed until intensive monitoring data can be collected—even in watersheds where large historical data sets exist. This paper provides a case study of a modeling effort that utilizes available historical data to fulfill an intermediate goal of a TMDL program for the Passaic River Basin. The subject model is developed to simulate total phosphorus concentrations (and loads) within the basin’s effluent-dominated streams. The model is based on the assumption that the primary process controlling in-stream total phosphorus concentrations is the dilution of the cumulative upstream effluent load—which was computed on a continuous (daily) basis. Model comparisons indicate a generally good fit to long-term river-monitoring data at several key sites. Model results, and data analyses, suggest that secondary processes have a relatively minor impact on total phosphorus (TP) concentrations in this relatively large, urbanized system. This finding is consistent with a previous QUAL2E model study of the system, and consistent with the relatively conservative behavior of TP reported in many medium-to-large river systems throughout the United States. Model results are used to facilitate TMDL planning efforts for a major water supply reservoir in the basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号