首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influences of protein concentration (0.2, 1, 2 wt%) and oil-phase volume fraction (5%, 20%, 40% v/v) on emulsion stability and rheological properties were investigated in whey protein isolate (WPI)-stabilized oil-in-water emulsions containing 0.2 wt% xanthan gum (XG). The data of droplet size, surface charge, creaming index, oxidative stability, and emulsion rheology were obtained. The results showed that increasing WPI concentration significantly affected droplet size, surface charge, and oxidative stability, but had little effect on creaming stability and emulsion rheology. At 0.2 wt% WPI, increasing oil-phase volume fraction greatly increased droplet size but no significant effect on surface charge. At 1 or 2 wt% WPI, increasing oil-phase volume fraction had less influence on droplet size but led to surface charge more negative. Increasing oil-phase volume fraction facilitated the inhibition of lipid oxidation. Meanwhile, oil-phase volume fraction played a dominant role in creaming stability and emulsion viscosity. The rheological data indicated the emulsions may undergo a behavior transition from an entropic polymer gel to an enthalpic particle gel when oil-phase volume fraction increased from 20% to 40% v/v.  相似文献   

2.
Flaxseed protein concentrate containing-mucilage (FPCCM) was used to stabilize soybean oil-in-water emulsions. The effects of FPCCM concentration (0.5, 1.0, 1.5% w/v) and oil-phase volume fraction (5, 10, 20% v/v) on emulsion stability and rheological properties of the soybean oil-in-water emulsions were investigated. Z-average diameter, zeta-potential, creaming index and rheological properties of emulsions were determined. The result showed that FPCCM concentration significantly affected zeta-potential, creaming rate and emulsion viscosity. The increasing of FPCCM concentration led to a more negative charged droplet and a lower creaming rate. Oil-phase volume fraction significantly affected Z-average diameter, rheological properties, creaming index and creaming rate. With the increase of oil-phase volume fraction, both Z-average diameter and emulsion viscosity increased, while creaming index and creaming rate decreased. The rheological curve suggested that the emulsions were shear-thinning non-Newtonian fluids.  相似文献   

3.
The creaming, flocculation and coalescence processes of destabilization of emulsions prepared with glycated β-lactoglobulin was analyzed. The glycation process was carried out with glucose and lactose in different reaction conditions (reaction time and protein:carbohydrate molar ratio) The glycation of β-lactoglobulin with both with glucose and lactose causes an increase in the stability of oil–water emulsions. It was found that the process of creaming had a sigmoid behavior which fit to an equation with two parameters, one with hyperbolic and other with sigmoidal kinetics and is directly related to particle size of the dispersed phase of the emulsion. β-lactoglobulin glycated with lactose emulsions showed greater stability to creaming than those prepared with β-lactoglobulin glycated with glucose, which was related to the decrease in the particle size of the dispersed phase and the increased concentration of protein at the interface of the emulsions. Flocculation and coalescence were not influenced by the glycation.  相似文献   

4.
将大豆分离蛋白(soybean protein isolate,SPI)经过超声波预处理不同时间,然后与木糖(xylose,XYL)以质量比4∶1在湿热条件(90?℃、6?h)下发生美拉德反应制备美拉德产物(Maillard reaction products,MRPs),并以此产物为乳化剂、大豆油为分散相制备乳状液,研究SPI超声处理对其与XYL美拉德反应及所得MRPs乳化能力的影响。结果表明:对SPI进行超声处理可以显著促进其与XYL之间的美拉德反应,并提高相应MRPs的Zeta电位、荧光强度及乳化能力。粒径分析和分层指数分析表明,与天然SPI相比,其经超声处理后再与XYL发生美拉德反应降低了相应MRPs稳定乳液在环境离子强度、加热及pH值发生变化时的聚集程度,但是对乳液的分层情况没有明显的改善作用。  相似文献   

5.
Rheological properties of single-phase, and emulsions containing modified starch and gum arabic as surface active hydrocolloids, as well as xanthan and tragacanth gums as stabilizers were evaluated under steady and dynamic shear testing conditions using a control stress rheometer. Emulsions were formed by 9% and 14% gum concentrations with oil concentration maintained at 9% thus giving a 1:1 and 1.5:1 surface active agent to oil ratio, respectively. The rates of droplet coalescence and creaming, for a total of 8 emulsions, as a function storage time before and after dilution in a simulated fruit beverage were then investigated. Steady shear (flow curve) were well described by the Carreau model at shear stress ranging from 0.01 to 100 Pa. All prepared water phases indicated a zero-shear viscosity plateau followed by shear thinning behavior with flow behavior index (n) ranging from 0.51 to 0.79 for 14% starch-0.3% xanthan and 14% gum arabic-0.8% tragacanth stabilized emulsions, respectively. The water phase flow property data were well fitted by the Einstein equation and its expansions. The dynamic rheological properties of water phase and emulsions were also evaluated for G′(ω) and G″(ω) from 1 to 50 rad/s. Similar curves were obtained with varying degrees of deviations (G′ from G″) for different emulsions. Starch-xanthan emulsion and associated water phase at 1.5/1 agent to oil ratio demonstrated viscoelastic behavior (G′ ≥ G″) with lower droplet coalescence and creaming rates. On the other hand, gum arabic-xanthan emulsion at 1:1 agent to oil ratio showed the highest rate of droplet coalescence and a greater degree of creaming. It was speculated that the lower stability of gum arabic-xanthan emulsion could be related to the denaturation of proteinaceous part in the gum and loss of emulsification capacity due to lower pH and pasteurization.  相似文献   

6.
ABSTRACT: Oil-in-water emulsions containing a commercial fraction of soy protein concentrate (SPC) were characterized for stability and microstructural differences. Emulsions were prepared with SPC (concentrations between 1% and 10% (w/v)) and soybean oil (10% w/w) and homogenized at 80 MPa. When SPC was added at a concentration high enough to be present in the dispersed phase, the average particle size, as determined by integrated light scattering, reached a plateau value. In addition, emulsions prepared with > 4% SPC showed increased viscosity with increasing SPC concentration. The protein formed a continuous network and emulsions were stable to creaming. Microstructural observations showed that phase separation occurred in emulsions prepared with high SPC concentrations.  相似文献   

7.
ABSTRACT: Calcium chloride (0 to 10 mM) and potassium chloride (0 to 600 mM) were added into model nutritional beverage emulsions containing 7% (w/w) soybean oil droplets and 0.35% (w/w) whey protein isolate (pH 6.7). The particle size, surface charge, viscosity, and creaming stability of the emulsions then were measured. The surface charge decreased with increasing mineral ion concentration. The particle size, viscosity, and creaming instability of the emulsions increased appreciably above critical CaCl2 (3 mM) and KCl (200 mM) concentrations because of droplet flocculation. The origin of this effect was attributed to reduction of the electrostatic repulsion between droplets due to electrostatic screening and ion binding. CaCl2 promoted emulsion instability more efficiently than KCl because Ca2+ ions are more effective at reducing electrostatic repulsion than K+ ions.  相似文献   

8.
Renou JP  Monin G  Sellier P 《Meat science》1985,15(4):225-233
Nuclear magnetic resonance measurements were made on pork samples from pigs of various genetic types (Large White, halothane positive and halothane-negative Pietrain) slaughtered either under minimal stress or somewhat stressful conditions. The 1H spin-lattice (T1) and spin-spin (T2) relaxation times of water protons were recorded. The observed T1 was single-exponential but a two-component T2 relaxation behaviour (components referred to as T2a and T2b) was observed. Highly significant relationships were found between T1 and all the meat characteristics studied. T2a was related only to ultimate pH and cooking loss, whereas T2b was more closely related to the rate of post-mortem pH fall and protein denaturation criteria.  相似文献   

9.
In this study we investigated the effect of droplet size on the antimicrobial activity of emulsions containing two essential oil compounds that are known for their antimicrobial effectiveness: carvacrol and eugenol. Coarse emulsions were prepared by blending a triacylglyceride (Miglyol 812N) containing various concentrations of carvacrol or eugenol (5, 15, 30, 50 wt%) at an oil droplet mass fraction of 10 wt% with an aqueous phase containing 2 wt% Tween 80(?). Premixes were then further dispersed using a high shear blender, a high pressure homogenizer at different pressures or an ultrasonicator to produce droplets with a variety of mean diameters. Microscopy and light scattering storage stability studies over 10 days indicated that manufactured emulsions were stable, i.e. that no aggregation, creaming or other destabilization mechanisms occurred and droplet size distributions remained unchanged. The antimicrobial activity of emulsions was assessed against two model microorganisms, the Gram negative Escherichia coli C 600 and the Gram positive Listeria innocua, by determining growth over time behavior. The analysis yielded the unexpected result that emulsions with larger droplet sizes were more effective at inhibiting growth and inactivating cells than smaller ones. For example, emulsions with a mean oil droplet size of 3000 nm at a concentration of 800 ppm carvacrol completely inhibited L. innocua, while for 80 nm emulsions, only a delay of growth could be observed. Measurements of the concentration of the antimicrobial compounds in the aqueous phase indicated that concentrations of eugenol and carvacrol decreased with decreasing oil droplet sizes. Determination of interfacial tension further showed that eugenol and carvacrol are preferentially located in the oil-water interfaces. Theoretical calculations of Tween 80(?) concentrations needed to saturate interfaces suggested that in small emulsions for the given formulation less Tween 80(?) micelles are present in the aqueous phase. We therefore attribute the fact that antimicrobial nanoemulsions are less active than macroemulsions due to an increased sequestering of antimicrobials in emulsion interfaces and a decreased solubilization in excess Tween 80(?) micelles.  相似文献   

10.
ABSTRACT:  Phase separation behavior of egg white-pectin/guar gum mixtures was investigated. These systems led to phase separation arisen by either depletion flocculation or thermodynamic incompatibility. The influence of polysaccharides on the emulsifying activity index (EAI), emulsifying stability index (ESI), creaming stability, microstructure, and rheological properties was also studied at different polysaccharide concentrations (0% to 0.5%, [w/v]). Increasing pectin and guar gum concentration from 0.01% to 0.5% significantly improved EAI by 51% and 25%, respectively. The highest ESI and EAI values were obtained in the presence of 0.5% (w/v) pectin/guar gum. Microscopic images showed that emulsions containing polysaccharides had small droplets as compared to that of emulsions without polysaccharides. The addition of polysaccharides improved emulsion stability against creaming. Egg white-stabilized emulsions with and without polysaccharides reflect the pseudoplastic behavior with  n  < 1.0. Polysaccharides, especially at high concentrations, affected the viscoelastic behavior of the emulsions; storage ( G ') and loss modulus ( G ") crossed-over at lower frequency values as compared to that of emulsions containing no polysaccharide.  相似文献   

11.
The shortening of shelf-life of food emulsions is frequently due to poor creaming and lipid oxidation stability. The lipid oxidation of O/W emulsions can be inhibited by rice dreg protein hydrolysate (RDPH); however, emulsions were stabilized by Tween-20. Polysaccharides can control the rheology and network structure of the aqueous continuous phase by increasing viscosity and yield stress, hence retarding phase separation and gravity-induced creaming, especially for xanthan gum. The objective of this research was to evaluate whether emulsions formed with 2 wt% RDPH and stabilized by xanthan gum (0–0.5 wt%) could produce 20 % (v/v) soybean oil-in-water emulsions that had good physical and oxidative stability. The degree of flocculation of droplets as a function of xanthan gum concentration was assessed by the microstructure, rheology, and the creaming index of emulsions. Addition of xanthan gum prior to homogenization had no significant effect on the mean droplet diameter in all emulsions studied. Increase in xanthan gum concentration led to the increase in creaming stability of emulsions, due to an increase in viscosity of the continuous phase and/or the formation of a droplet network with a yield stress, as well as the enhanced steric and electrostatic repulsion between the droplets. Lipid oxidation of the emulsions was significantly inhibited at xanthan gum concentrations of 0.12 wt% or above with RDPH, which could due to the fact that xanthan gum increases the viscosity of the aqueous phase and hindered the diffusion of oxidants to the oil droplet surface area, synergistic effect between RDPH and xanthan gum to suppress oil peroxidation, and metal ion chelation capability of xanthan gum. Thus, stable protein hydrolyzates-type emulsions could be obtained with increasing concentration of xanthan gum.  相似文献   

12.
Studies have been made of the changes in droplet sizes, surface coverage and creaming stability of emulsions formed with 30% (w/w) soya oil, and aqueous solution containing 1 or 3% (w/w) sodium caseinate and varying concentrations of xanthan gum. Addition of xanthan prior to homogenization had no significant effect on average emulsion droplet size and surface protein concentration in all emulsions studied. However, addition of low levels of xanthan (≤0.2 wt%) caused flocculation of droplets that resulted in a large decrease in creaming stability and visual phase separation. At higher xanthan concentrations, the creaming stability improved, apparently due to the formation of network of flocculated droplets. It was found that emulsions formed with 3% sodium caseinate in the absence of xanthan showed extensive flocculation that resulted in very low creaming stability. The presence of xanthan in these emulsions increased the creaming stability, although the emulsion droplets were still flocculated. It appears that creaming stability of emulsions made with mixtures of sodium caseinate and xanthan was more closely related to the structure and rheology of the emulsion itself rather than to the rheology of the aqueous phase.  相似文献   

13.
低场核磁共振分析猪肉宰后成熟过程中的水分变化   总被引:1,自引:0,他引:1  
以三元杂交猪为对象,利用核磁共振技术分析猪肉不同相态水分的弛豫时间和含量比例,研究了不同保水性猪肉在宰后成熟过程中水分变化情况。结果表明:猪肉成熟过程中的核磁共振T2弛豫谱显示3个峰,横向弛豫时间分别为T21(2.127~2.541 ms)、T22(31.248~48.817 ms)和T23(167.086~275.782 ms)。宰后同一时间下低、中、高三组保水性猪肉T21及P21均无显著性差异,与低保水性组相比,高保水性猪肉T22及T23均显著降低,P22显著升高,自由水比例P23显著低于低保水性组(p<0.05)。宰后成熟过程中各组肉样T21变化不大,T22和T23均呈现先上升后下降的趋势,并在宰后8 h达到最高值。成熟时间对P21无显著性影响,但对P22和P23影响显著(p<0.05)。核磁成像图显示肉样亮度随着成熟时间的延长而增加。该实验结果对于研究肉品成熟过程中的水分变化具有重要意义,同时为解释肉品保水性机理提供理论依据。   相似文献   

14.
The incorporation of relevant amounts of non-adsorbing hydrocolloids to oil-in-water (O/W) emulsions is a suitable alternative to reduce creaming. The effect of incorporating xanthan gum (XG) or guar gum (GG) in soy soluble polysaccharide (SSPS) stabilized oil-in-water (O/W) emulsions was studied. The emulsions contained 6 wt.% of SSPS, 20 wt.% Perilla seed oil (PSO), an omega-3 vegetable oil, and variable amounts of XG or GG ranging from 0.03 to 0.3 wt.%. The presence of minute amounts of XG or GG in fresh emulsions significantly decreased the emulsion droplet size (EDS) although such low concentrations did not provide enough continuous phase viscosity to arrest creaming. Emulsion microstructure indicated the presence of flocculation even at high concentrations of XG or GG caused by a depletion mechanism. All emulsions with XG or GG exhibited pseudoplastic behavior while the control emulsions showed an almost Newtonian behavior. Emulsion droplet polydispersion generally decreased with increase in the continuous phase viscosity indicating the importance of continuous phase viscosity in the dissipation of shear energy throughout the emulsion during homogenization. The characteristics of the emulsions were closely related to the rheological changes of the continuous phase.  相似文献   

15.
  目的  本研究利用dsRNA技术沉默2b基因,获得烟草品种云烟85的T1代转基因抗CMV株系。  方法  构建含有CMV 2b部分序列反向重复的植物表达载体pBIN-2b(r)-In-2b(i),以农杆菌介导的叶盘法转化普通烟草(Nicotiana tabacum)品种云烟85。  结果  抗性筛选获得112株T0代转基因阳性植株,接种CMV进行抗病性鉴定,发现有46株T0代转基因植株表现为抗病,其他66株表现为感病。Tas-ELISA检测表明,T0代抗病烟株的病毒积累量显著低于感病烟株。选取10个T0代抗病株系繁殖,接种CMV鉴定T1代抗病性,发现部分T1代烟株发生一定比例的抗感分离,T1代抗性株率为46.7%~100%。Real-time PCR检测T1代烟株,发现T1代抗病烟株CMV 2b基因RNA积累水平显著低于感病烟株。  结论  基于以上策略及实验,获得抗CMV转基因烟草株系。   相似文献   

16.
基于LFNMR及成像技术分析牛肉贮藏水分含量变化   总被引:2,自引:0,他引:2  
为研究牛肉贮藏水分含量变化,基于低场核磁共振(LF-NMR)技术测定牛肉横向弛豫时间T2、峰面积,运用差示扫描量热法(DSC)测定玻璃化转变温度(Tg)。结果表明,肉样中存在4种不同水分群,-10℃贮藏牛肉T2明显降低,自由水含量显著下降,在-14、-18、-22℃贮藏牛肉T2未发生明变化。冷却过程中不易流动水(pT22)前期呈下降趋势,后期较稳定,说明随贮藏时间的延长,不易流动水逐渐转移为自由水。自由水(pT23)先减小后增大后又极显著降低(p<0.01)。通过对牛肉品质指标与核磁共振参数T2的相关性分析,发现蒸煮损失与T20、T22、pT23显著相关(p<0.05),相关系数分别为0.777、0.745、0.783,因此可根据T22、pT23表征牛肉在贮藏过程中保水性的变化。通过核磁成像实验发现,在-10℃贮藏牛肉,干耗现象严重、肉的保水性差,不利于牛肉的长期贮藏。  相似文献   

17.
The effects of pectin and guar gum on rheology, microstructure and creaming stability of 1% (w/v) egg yolk granule stabilized emulsions were investigated. While the addition of low amount of pectin (0.1% (w/v)) had no effect on the emulsion viscosity, the addition of 0.5% (w/v) pectin greatly increased the viscosity. Granule-stabilized emulsion without hydrocolloids reflects the pseudoplastic behavior (shear-thinning behavior with flow behavior index, n < 1.0). Hydrocolloids, especially at high concentrations, affected the viscoelastic behavior of the emulsions and both storage (G′) and loss modulus (G′′) were regarded as frequency dependent. Emulsions behaved like a liquid with G′′ > G′ at lower frequencies, and like an elastic solid with G′ > G′′ at higher frequencies. Emulsion microstructure indicated that the presence of hydrocolloids induced flocculation. Creaming stability of emulsions was enhanced by the presence of hydrocolloids and increasing hydrocolloid concentration decreased the creaming by restricting the movement of oil droplets.  相似文献   

18.
黄原胶对O/W乳状液稳定性的影响   总被引:6,自引:0,他引:6  
报道了含有黄原胶的20O/W乳状液贮藏在27~30℃的分层动力学的研究。实验运用超声波技术考察了从0.0005~0.5wt%的一系列浓度的黄原胶对体系分层特性的影响。在非常低(<0.001wt%)的黄原胶浓度下,实验体系的稳定性变化不大。0.01~0.02wt%的黄原胶可引起样品底部富水层出现,但体系无明显分层。当黄原胶浓度增加到0.02wt%以上,乳状液很快分层,且分层的状态取决于黄原胶添加量。只有当添加量超过0.25wt%,黄原胶才能起到提高体系稳定性的作用。对非吸附性的黄原胶的这种影响,可以用“排除絮凝”和弱凝胶结构形成的机理进行解释。  相似文献   

19.
The effect of the addition of sucrose and xanthan gum, protein concentration, and processing method on the stability and destabilization mechanism type of emulsions formulated with two commercial whey protein concentrate powders was described and quantified following system changes with a Turbiscan TMA 2000, a light scattering equipment and a confocal laser scanning microscope. Two different processing methods that gave particle sizes with different orders of magnitude were compared: homogenization by ULTRA-TURRAX (UT) and by ultrasound (US). The addition of sucrose to the aqueous phase of emulsions significantly diminished volume-weighted mean diameter (D 4,3) and improved stability. When the aqueous phase contained xanthan gum, the main destabilization mechanism for UT emulsions changed from creaming to flocculation. For US emulsions, although some aggregation was detected by confocal laser scanning microscopy, it was not great enough to modify the backscattering average (BSav) in the middle zone of the tube (20–50 mm). At low protein concentrations, the profiles corresponded to destabilization of small aggregates. In those conditions, creaming was markedly enhanced as evident from creaming rate values. Independently of aqueous phase composition, US emulsions stabilized by protein concentrations higher than 5 wt% were stable, indicating that whey proteins were good emulsion stabilizers at pH close to 7. This study shows the relevance of protein type on stability and describes for the first time a behavior for whey proteins different from the one reported for caseins in literature.  相似文献   

20.
为研究鲢鱼滑在-20℃冻藏过程中的结构变化,测定了鲢鱼滑盐溶性蛋白含量、活性巯基含量和Ca2+-ATPase活性,并结合圆二色光谱(CD)、扫描电镜(SEM)和低场核磁(LF-NMR)进行分析。结果发现,三个指标随冻藏时间延长逐渐下降,其中盐溶性蛋白含量从新鲜状态的58.2 mg/g降至17.3 mg/g,活性巯基含量从0.598 mol/105g降至0.204 mol/105g,Ca2+-ATPase活性从0.214μmol/min·g降至0.051μmol/min·g;CD扫描结果显示,冻藏初期α-螺旋主要向β-折叠转化,后主要转化为无规则结构;SEM结果显示,鲢鱼滑凝胶结构由于失水而逐渐收缩,表面光滑度降低,凝胶网络结构受损;LF-NMR的T2谱显示-20℃环境下有两种结合水的横向弛豫时间,分别为T21(0.091 ms)和T22(110 ms),随着冻藏时间的延长,T21无明显变化,T22总体呈现下降趋势,可知蛋白内部对水分的束缚力增强。从结构变化角度探究了鲢鱼滑在冻藏过程的品质变化。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号