首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
A one-dimensional transient single coal particle combustion model was proposed to investigate the characteristics of single coal particle combustion in both O2/N2 and O2/CO2 atmospheres under the fluidized bed combustion condition. The model accounted for the fuel devolatilization, moisture evaporation, heterogeneous reaction as well as homogeneous reactions integrated with the heat and mass transfer from the fluidized bed environment to the coal particle. This model was validated by comparing the model prediction with the experimental results in the literature, and a satisfactory agreement between modeling and experiments proved the reliability of the model. The modeling results demonstrated that the carbon conversion rate of a single coal particle (diameter 6 to 8 mm) under fluidized bed conditions (bed temperature 1088 K) in an O2/CO2 (30:70) atmosphere was promoted by the gasification reaction, which was considerably greater than that in the O2/N2 (30:70) atmosphere. In addition, the surface and center temperatures of the particle evolved similarly, no matter it is under the O2/N2 condition or the O2/CO2 condition. A further analysis indicated that similar trends of the temperature evolution under different atmospheres were caused by the fact that the strong heat transfer under the fluidized bed condition overwhelmingly dominated the temperature evolution rather than the heat release of the chemical reaction.  相似文献   

2.
A new thermochemical cycle for H2 production based on CeO2/Ce2O3 oxides has been successfully demonstrated. It consists of two chemical steps: (1) reduction, 2CeO2 → Ce2O3 + 0.5O2; (2) hydrolysis, Ce2O3 + H2O → 2CeO2 + H2. The thermal reduction of Ce(IV) to Ce(III) (endothermic step) is performed in a solar reactor featuring a controlled inert atmosphere. The feasibility of this first step has been demonstrated and the operating conditions have been defined (T = 2000 °C, P = 100–200 mbar). The hydrogen generation step (water-splitting with Ce(III) oxide) is studied in a fixed bed reactor and the reaction is complete with a fast kinetic in the studied temperature range 400–600 °C. The recovered Ce(IV) oxide is then recycled in first step. In this process, water is the only material input and heat is the only energy input. The only outputs are hydrogen and oxygen, and these two gases are obtained in different steps avoiding a high temperature energy consuming gas-phase separation. Furthermore, pure hydrogen is produced (it is not contaminated by carbon products like CO, CO2), thus it can be used directly in fuel cells. The results have shown that the cerium oxide two-step thermochemical cycle is a promising process for hydrogen production.  相似文献   

3.
Biomass in the form of pine wood was pyrolysed in an externally heated 7.5 cm diameter, 100 cm high fluidised bed pyrolysis reactor with nitrogen as the fluidising gas. A section of the freeboard of the reactor was packed with zeolite ZSM-5 catalyst. The pyrolysis oils before and after catalysis were collected in a series of condensers and cold traps. In addition, gases were analysed off-line by packed column gas chromatography. The compositions of the oils and gases were determined in relation to the primary fluidised bed and after catalysis at increasing catalyst bed temperatures from 400° to 550°C. The oils were analysed by a number of techniques to determine composition, including liquid chromatography, gas chromatography/mass spectrometry. Fourier transform infrared spectroscopy and size exclusion chromatography. The results showed that the oils before catalysis were highly oxygenated; after catalysis the oils were markedly reduced in oxygenated species with an increase in aromatic and polycyclic aromatic species.

The gases evolved from the fluidised bed pyrolysis of biomass were CO2, CO, H2, CH4, C2H4, C3H6 and minor concentrations of other hydrocarbon gases. After catalysis the concentrations of CO2 and CO were increased. The conversion of oxygenated compounds was mainly to H2O at lower catalyst temperatures and CO2 and CO at high catalyst temperatures. Detailed analysis of the oils showed that there were high concentrations of biologically active polycyclic aromatic species in the catalysed oil which increased with increasing catalyst temperature. The oxygenated compounds in the uncatalysed oil were mainly phenols and carboxylic acids. After catalysis these decreased in concentration with increasing catalyst temperature  相似文献   


4.
M. Halmann  A. Steinfeld   《Energy》2006,31(15):3171-3185
Flue gases from coal, gas, or oil-fired power stations, as well as from several heavy industries, such as the production of iron, lime and cement, are major anthropogenic sources of global CO2 emissions. The newly proposed process for syngas production based on the tri-reforming of such flue gases with natural gas could be an important route for CO2 emission avoidance. In addition, by combining the carbothermic reduction of iron oxide with the partial oxidation of the carbon source, an overall thermoneutral process can be designed for the co-production of iron and syngas rich in CO. Water-gas shift (WGS) of CO to H2 enables the production of useful syngas. The reaction process heat, or the conditions for thermoneutrality, are derived by thermochemical equilibrium calculations. The thermodynamic constraints are determined for the production of syngas suitable for methanol, hydrogen, or ammonia synthesis. The environmental and economic consequences are assessed for large-scale commercial production of these chemical commodities. Preliminary evaluations with natural gas, coke, or coal as carbon source indicate that such combined processes should be economically competitive, as well as promising significant fuel saving and CO2 emission avoidance. The production of ammonia in the above processes seems particularly attractive, as it consumes the nitrogen in the flue gases.  相似文献   

5.
The urgency and necessity of alternative fuels give an impetus to the development of modern coal chemical industry. Coal-based methanol/DME is the key element of this industry. Wind power, whose installed capacity increased at a rate of more than 100% in recent years, has the most developed technologies in renewable energy. However, there still exist many unsolved problems in wind power for on-grid utilization. A new integrated system which combines coal-based methanol/DME production with wind power is proposed in this paper. In this system, wind power is used to electrolyze water to produce H2 and O2. The O2 is fed to the gasifier as gasification agent. The H2 is mixed with the CO-rich gas to adjust the H2/CO to an appropriate ratio for methanol synthesis. In comparison with conventional coal-based methanol/DME system, the proposed system omits the expensive and energy-consuming ASU and greatly reduces the water gas shift process, which brings both advantages in the utilization of all raw materials and significant mitigation of CO2 emission. This system will be attractive in the regions of China which have abundant wind and coal resources.  相似文献   

6.
Mukuna Tshiteya 《Energy》1985,10(12):1299-1306
A laboratory feasibility study was undertaken to evaluate the bioconversion of draff, a residue from the industrial conversion of malt in brewery, into a valuable fuel. Reaction rates up to 0.194 m3 gas/m3 digester/day and an overall yield of 35 m3 gas/dry ton substrate were observed at ambient temperature. Orsat analysis showed the biogas composition to be (in %): CH4, 61; CO2, 38; O2, 0.40; H2S, 0.20. Its energy content is 24.5 MJ/m3. The latent period was shortened to 24 hrs by seeding the reactor with active microorganisms from a well-operating anaerobic digester charged with horse's manure. A conversion-factor chart is constructed which compares the product biogas to other common fuels. Experimental tests were also performed on the same bench-scale equipment to evaluate the bioconversion of bovine and horse manures under similar conditions. The draff is shown to be a valuable potential fuel source.  相似文献   

7.
This paper surveys the database on char gasification at elevated pressures, first, to identify the tendencies that are essential to rational design of coal utilization technology, and second, to validate a gasification mechanism for quantitative design calculations. Four hundred and fifty-three independent tests with 28 different coals characterized pressures from 0.02 to 3.0 MPa, CO2 and steam mole percentages from 0 to 100%, CO and H2 levels to 50%, gas temperatures from 800 to 1500 °C, and most of coal rank spectrum. Only a handful of cases characterized inhibition by CO and H2, and only a single dataset represented the complex mixtures of H2O, CO2, CO, and H2 that arise in practical applications. With uniform gas composition, gasification rates increase for progressively higher pressures, especially at lower pressures. Whereas the pressure effect saturates at the higher pressures with bituminous chars, no saturation is evident with low-rank chars. With fixed partial pressures of the gasification agents, the pressure effect is much weaker. Gasification rates increase for progressively higher gas temperatures. In general, gasification rates diminish for coals of progressively higher rank, but the data exhibit this tendency only for ranks of hv bituminous and higher.

These tendencies are interpreted with CBK/G, a comprehensive gasification mechanism based on the Carbon Burnout Kinetics Model. CBK/G incorporates three surface reactions for char oxidation plus four reactions for gasification by CO2, H2O, CO and H2. Based on a one-point calibration of rate parameters for each coal in the database, CBK/G predicted extents of char conversion within ±11.4 daf wt% and gasification rates within ±22.7%. The predicted pressure, temperature, and concentration dependencies and the predicted inhibiting effects of CO and H2 were generally confirmed in the data evaluations. The combination of the annealing mechanism and the random pore model imparts the correct form to the predicted rate reductions with conversion. CBK/G in conjunction with equilibrated gas compositions accurately described the lone dataset on complex mixtures with all the most important gasification agents, but many more such datasets are needed for stringent model evaluations.

Practical implications are illustrated with single-particle simulations of various coals, and a 1D gasifier simulation for realistic O2 and steam stoichiometries. The rank dependence of gasification rates is the determining factor for predicted extents of char conversion at the gasifier outlet. But soot gasification kinetics will determine the unburned carbon emissions for all but the highest rank fuels. Only gasification kinetics for gas mixtures with widely variable levels of H2O, H2, and CO are directly relevant to gasifier performance evaluations.  相似文献   


8.
Emissions of nitrous oxide from combustion sources   总被引:8,自引:0,他引:8  
Nitrous oxide (N20) has recently become the subject of intense research and debate, because of its increasing concentrations in the atmosphere and its known ability to deplete the ozone layer and also to contribute to the greenhouse effect. There are both natural and anthropogenic sources for N2O; however, the man-made sources are increasing at a much higher rate than natural ones. Until very recently it was believed that the combustion of fossil fuels, especially coal, was the major contributing factor to these anthropogenic sources. For example, 30% of all N20 released into the atmosphere was once attributed to combustion sources, with 83% of the combustion sources coming from coal combustion. Correction of a recently discovered sampling artifact, whereby SO2, H2O and NO in combustion gases react in a sampling vessel to produce N2O, has revealed that, in fact, less than 5 ppm of N20 are found in most product gases from combustion systems. Fluidized bed coal combustors are the exception, though, yielding N2O levels of ca. 50ppm in their off-gases.

The gas-phase reactions of N20 in flames are reviewed first. It is clear that in most cases N20 is a very reactive intermediate, which is quickly destroyed before being emitted from a flame. The important homogeneous reactions removing N20 are thermal decomposition to N2 and O2 and also radical attack in e.g. N2O + H → N2 + OH. Nitrous oxide is formed from nitrogen-containing species by NO reacting with a radical derived from either HCN or NH3; the reactions are NCO + NO → N20 + CO and NH + NO → N20 + H. The levels of N2O observed are a balance betwen its rates of formation and destruction. It turns out that HCN is a more efficient precursor than NH3 at producing N20. The removal of N2O is fastest at high temperatures and in fuel-rich systems, where free hydrogen atoms are present in relatively large amounts.

When coal burns in a fluidized bed, most of the N2O detected is produced during devolatilization, rather than in the subsequent stage of char combustion. It is clear that HCN and NH3 are produced from nitrogenous material released during devolatilization; these two compounds give N20 when the volatiles burn. The burning of char, on the other hand, involves the chemi-sorption of O2 on to sites containing carbon or nitrogen atoms, followed by surface reaction, with one of the products being N20, in addition to CO, CO2 and NO. Fluidized coal combustors have temperatures around 900°C, which is low enough for the thermal decomposition of N2O to be relatively slow. In addition, the presence of the solid phase provides a large area for radical recombination, which in turn reduces the rate of removal of N2O by free radicals. Parametric studies of fluidized bed combustors have shown that factors such as: temperature, amount of excess air, carbon content and O/N ratio of the coal, all have a significant effect on N2O emissions. It is important to note that heterogeneous reactions with solids, such as CaO and char, can cause large decreases in the amount of N2O produced during the combustion of coal in a fluidized bed. In fact, there are several methods available for lowering the yields of N2O from fluidized bed combustors generally. Areas of uncertainty in the factors affecting N2O emissions from fluidized bed combustors are identified.  相似文献   


9.
建立干桦木屑在下吸式固定床气化炉中的Aspen Plus气化模型,该模型预测煤气组成和煤气热值,与文献试验结果吻合良好。利用灵敏度分析模块模拟了氧碳比、CO2/C对气化结果的影响,并提出O2/CO2分段气化流程,对比常规的CO2气化特征,分析了CO2/C对气化结果的影响。结果表明,纯氧气化时可获得高H2和CO浓度的气化气,但其净CO2排放量较高,氧碳比增加使碳转化率逐渐增加、冷煤气效率先增加后降低;CO2作为气化剂时,随着CO2/C的增加,净CO2排放量逐渐减少,但碳转化率及冷煤气效率大幅降低;与常规CO2气化相比,O2/CO2分段气化在保持低CO2排放量的同时,可有效增加气化过程中的碳转化率及冷煤气效率。  相似文献   

10.
利用Aspen Plus 软件建立干桦木屑在下吸式固定床气化炉中的气化模型,模拟值与文献实验值吻合良好。利用Aspen Plus的灵敏度分析模块模拟分别以水蒸气(H2O)和二氧化碳(CO2)为气化剂时气化剂/生物质碳比(GC值)对气化结果的影响,并结合H2O、CO2各自的特点研究其复合气化。结果表明,H2O气化时可获得富氢煤气,但其净CO2排放量较高;CO2气化时碳转化率及冷煤气效率较低,但净CO2排放量较低;H2O、CO2复合气化使碳转化率及冷煤气效率略有降低,但可有效减少气化系统中的净CO2排放量。  相似文献   

11.
Numerical integration of a set of rate equations applicable to the hydrogen-oxygen system suggests that it should be possible to recover H2 and O2 by rapid cooling of low-pressure equilibrium mixtures from a solar furnace. Using the University of Minnesota 4.2 m solar furnace, we were able to recover explosive mixtures of H2 and O2 from water which had been heated to about 2100K. The numerical calculations and the experiment are described.  相似文献   

12.
Biomass as a reburning fuel: a specialized cofiring application   总被引:8,自引:0,他引:8  
Reaction Engineering International has performed a series of combustion tests to evaluate the potential for utilizing wood biomass as a reburn fuel for nitrogen oxides (NOx) control. Reburning is an effective NOx reduction technology that utilizes fuel injection above the main burner zone. Studies with other hydrocarbon fuels such as coal and natural gas as reburn fuels have shown that NOx emissions can be reduced by more than 50–60% with about 15% of the heat input coming from the reburn fuel. Two different biomasses, a hardwood and softwood, were evaluated as reburning fuels and compared to coal and natural gas. The use of wood to reduce NOx is attractive for several reasons. First, wood contains little nitrogen, as compared with coal which is also used as a reburning fuel. This results in lower NOx production from fuel nitrogen species for wood. In addition, wood contains virtually no sulfur, so sulfur dioxide (SO2) emissions are reduced in direct proportion to the coal replacement. Wood is a regenerable biofuel; when a fossil fuel is replaced by a biofuel, there is a net reduction in carbon dioxide (CO2) emissions. Finally, since the reburning fuel is normally 10–20% of the total heat input, large quantities of wood are not necessary. Experimental results showed NOx reductions of as high as 70% were obtained with approximately 10–15% wood heat input. The stoichiometric ratio in the reburn zone was the single most important variable affecting NOx reduction. The highest reductions were found at a reburn stoichiometric ratio of 0.85. NOx reduction fell to about 40–50% at slightly higher stoichiometric ratios (0.9x reduction was strongly dependent on initial NOx concentration and only slightly dependent upon temperature, where increased temperature increased NOx reduction. Finally, the experimental results suggest that wood is as effective as natural gas or coal as a reburning fuel. In addition, REI has completed computer simulations of a full-scale boiler to evaluate the conditions that maximize the NOx reduction efficiency using biomass as the reburn fuel. Computer modeling of the TVA Allen Station Unit 3, a 265 MWe cyclone-fired boiler, showed that NOx reductions as high as 50–60% could be achieved within the constraints set by the boiler and operations. The most important parameters affecting final NOx emissions are the cyclone barrel stoichiometry, residence time in the reburn zone, and mixing in both the reburn and overfire air zones. The combination of computer simulations and experimental programs has provided the engineers with the tools needed to optimize biomass as a reburn fuel to maximize NOx reduction.  相似文献   

13.
Nitrogenase activity and H2 production capacity have been studied in intact Azolla plants. Under aerobic conditions the plants showed a C2H2 reduction rate of 6.65 nmoles C2H4 mg−1 fresh weight in light at 48h. Considerable activity was also present in the dark. Though H2 evolution was detected under aerobic conditions there was multifold stimulation under anaerobic conditions. There was no significant change in nitrogenase activity under anaerobic conditions. Increasing concentrations of O2 inhibited nitrogenase activity but 5% O2 proved stimulatory for H2 evolution in light. In the dark, there was a gradual stimulation in H2 evolution even up to 20% O2. Addition of combined nitrogen sources, namely NH4Cl or KNO3 (10 mM) resulted in complete inhibition of C2H2-reduction activity within 48 h, but H2 evolution was not inhibited. Indeed these combined nitrogen sources stimulated H2 evolution. Though nitrogenase activity was affected, the heterocyst frequency remained unaltered. Phosphate addition resulted in significant stimulation of nitrogenase and H2 evolution activity. These results suggest that on nitrogenase and H2 evolution activity in Azolla are affected by a number of factors which show a differential effect on nitrogenase and H2 evolution. Furthermore, our results indicate the presence of a soluble reversible hydrogenase in Azolla.  相似文献   

14.
The chemistry of char was probed by studying nitrogen release under the reactions with air and oxy-fuel combustion. The experiments were conducted in a drop tube furnace and a fixed bed flow reactor. NO was observed during those experiments. The results show that the particle size of char generated at 1073 K in CO2 is larger than that in N2. However, at 1573 K, it is smaller in CO2 atmosphere due to particle breaking by gasification of char and CO2. The Fe addition increases the NO conversion ratio, and the effect of Fe rises steeply with the process going until it becomes stable in the end. The results also indicate that the release of NO increases more significantly with the Fe addition in oxy-fuel environment.  相似文献   

15.
With increasing environmental considerations and stricter regulations, gasification of waste is considered to be a more attractive technology than conventional incineration for energy recovery as well as material recycling. The experiment for combustible waste mixed with plastic and cellulosic materials was performed in a fixed-bed gasifier to investigate the gasification behaviour with the operating conditions. Waste pelletized to a diameter of 2–3 cm and 5 cm length, was gasified in the temperature range 1100–1450 °C. The composition of H2 was in the range 30–40% and CO 15–30% depending upon the oxygen/waste ratio. Gasification of waste due to the thermoplastic property of the mixed-plastic melting and thermal cracking shows a prominent difference from that of coal or coke. It was desirable to maintain the top temperature at 400 °C to ensure the mass transfer and uniform reaction throughout the packed bed. As the bed height was increased, the formation of H2 and CO was increased, whilst the CO2 decreased by the char-CO2 reaction and plastic cracking. From the experimental results, the cold gas efficiency was around 61% and the heating values of product the gases were in the range of 2800–3200 kcal/Nm3.  相似文献   

16.
Carbon dioxide emission rates for conventional and synthetic fuels   总被引:1,自引:0,他引:1  
Gregg Marland 《Energy》1983,8(12):981-992
With rising concern about the increasing atmospheric concentration of CO2 and its potential impact on global climate, there have been suggestions that the CO2 emission rates be considered in selecting among fuel-producing technologies. Many previous comparisons have been inadequately drawn. We discuss criteria for carefully drawn comparisons and compute CO2 emission rates in kgC/109 joules for a variety of conventional or synthetic fuel processes. Although the total CO2 release per joule is on the order of 1.8 (±0.2) times as much for burning liquid fuels from coal as for liquid fuels from crude oil, useful comparisons among synthetic fuel processes are not easy and the results are subject to changes in boundary conditions of resource availability, plant location, environmental requirements, output slate desired, economics, etc.  相似文献   

17.
This paper presents results from an experimental study performed on a 13 kWth commercial domestic boiler using pellets as fuel. Four different types of pellets were used and, for each one, the boiler was tested as a function of its capacity and the fan regulation affecting excess air. Measurements were performed for boiler heat load, pellets consumption rate, flue-gas temperature and composition. Mass balances allowed the calculation of the flue-gas flow rate and associated heat losses. Losses from incomplete combustion have also been quantified. Under boiler steady-state conditions the flue-gas O2 concentration changes with boiler load and ventilation due to the regulation scheme of the boiler. Flue-gas CO shows a minimum for values of O2 in the flue-gases of about 13%. NOx emissions are independent of excess air for low values of nitrogen in the fuel whereas, for larger values, NOx emissions increase with the O2 present in the combustion products. The fractional conversion of the pellets nitrogen into NOx is in line with literature data. The boiler start-up was characterised by the temperature evolution inside and above the bed showing the propagation of combustion in the bed during about 10 min. During boiler start-up, a maximum in CO emissions was observed which is associated with the maximum combustion intensity, as typified by the flue-gas O2 concentration and temperature, regardless the pellets type.  相似文献   

18.
Sweden's goals of contemporaneously reducing CO2 emissions and phasing out nuclear power will require a maximum utilization of biomass fuels. This would imply a significant shift from electricity and fuel oil to biomass generated heat, but must also be accomplished without a deterioration of the local air quality. The most suitable energy carrier seems to be pelletized biomass fuels with their associated low emissions and considerable residential conversion potential. Using an underlying statistical design, a parametric dispersion modeling study was performed to estimate and illustrate the combined effects of source-specific, meteorological and modeling variables on the ambient air quality in a typical residential area for different conversion scenarios. The work nicely illustrated the benefits of combining statistical designs with model calculations. It further showed that the concentration of combustion related ambient THC was strongly related to conditions affecting the source strength, but only weakly to the dispersion conditions and model variables. Time of year (summer or winter); specific emission performance; extent of conversion from electricity; conversion from wood log combustion; and specific efficiency of the pellet appliances showed significant effects in descending order. The effects of local settings and model variables were relatively small, making the results more generally applicable. To accomplish the desired conversion to renewable energy in an ecologically and sustainable way, the emissions would have to be reduced to a maximum advisable limit of 25±7 mgTHC/MJfuel (given as CH4). Further, the results showed the potential positive influence by conversion from wood log to low emission pellet combustion.  相似文献   

19.
本文提出以Fe2O3为载氧体、以CaO捕集CO2的生物质化学链气化系统,利用Aspen Plus软件对该系统进行了模拟,以合成气组成(干基)、合成气氢碳比、含碳产物的碳摩尔分布、冷气效率及收率等为系统性能评价指标,重点分析了燃料反应器温度(TFR)、载氧体Fe2O3与生物质碳摩尔比(Fe2O3/C)、水蒸气与生物质碳摩尔比(Steam/C)、CaO与生物质碳摩尔比(CaO/C)等系统参数对固体生物质化学链气化系统的影响。结果表明,在TFR = 825℃、Fe2O3/C = 0.5、Steam/C = 0.71和CaO/C = 0.26条件下,合成气制备系统性能较优,合成气中H2和CO2含量分别为55.2%和15.4%,氢碳比为1.93,冷气效率为78.2%,被CaCO3捕集的生物质碳为18.2%,收率(湿气基)为1.95 Nm3/kgbiomass,其中合成气中H2和CO收率为1.24 Nm3/kgbiomass。  相似文献   

20.
This paper reviews the recent developments on thermochemical conversion of concentrated solar high temperature heat to chemical fuels. The conversion has the advantage of producing long term storable energy carriers from solar energy. This conversion also enables solar energy transportation from the sunbelt to remote population centers. The thermochemical pathway is characterized by a theoretical high efficiency. However, there are solar peculiarities in comparison to conventional thermochemical processes—high thermal flux density and frequent thermal transients because of the fluctuating insolation—, and conventional industrial thermochemical processes are generally not suitable for solar driven processes. Therefore, the adaptation to such peculiarities of solar thermochemical processes has been the important R&D task in this research field. Thermochemical water splitting, steam or CO2 gasification of coal, steam or CO2 reforming of methane, and hydrogenetive coupling of methane, are industrially important, endothermic processes to produce useful chemical fuels such as hydrogen, synthesis gas and C2-hydrocarbons, which have been examined as solar thermochemical processes. The technical developments and feasibilities to conduct these endothermic processes by utilizing concentrated solar radiation as the process heat are discussed here. My recent experimental results to improve the advanced solar thermochemical technologies are also given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号